نوشته شده توسط : حامد
 

امروزه مصرف انرژي در صنعت برق رو به افزايش است و اثرات مخربي بر روي سلامتي و ايمني انسان داشته است. تاثيرات ميدانهاي الكتريكي و مغناطيسي بر روي سلامت و بهداشت انسان از مضرات اين صنعت مي‌باشد. ما در زندگي روزمره در محيط كار و خانه و مدرسه در معرض ميدان الكتريكي و مغناطيسي هستيم. ميدانهاي مغناطيسي و الكتريكي به وسيله خطوط نيرو، سيمهاي الكتريكي و تجهيزات الكتريكي توليد مي شود و خطوط نامرئي نيرو هستند كه در اطراف هر وسيله وجود دارند و قدرت آن با افزايش ولتاژ افزايش مي‌يابد. ميدان الكترومغناطيسي از وسايل برقي مثل كامپيوتر شخصي، فر برقي، تلويزيون، يخچال و غيره و نيز خطوط انتقال نيروي برق با ولتاژ زياد حاصل مي شود. ميدان الكترومغناطيسي بر روي سيستمهاي عصبي و رشد و تكامل و ترميم سلولها اختلالاتي ايجاد مي‌كند و موجب پيدايش امراض ناشناخته مانند انواع سرطانها، طومورهاي مغزي و ناباروري در انسان مي‌شود همچنين افرادي كه به دفعات و به مدت طولاني در معرض چنين ميدانهايي قرار مي‌گيرند و نيز افراد شاغل در صنايع برق و تلفن، تعميركاران تلويزيون و جوشكاران آسيب پذيرتر مي‌باشندپس بايد با نصب دستگاههاي كنترل سرطانزايي در محيط كار و شناسايي منابع توليد الكترومغناطيسي، رعايت نكات ايمني در محيط كار و در صورت امكان استفاده از تجهيزاتي كه داراي حداقل ميزان انتشار امواج الكترومغناطيسي است محيطي مناسب براي كار و فعاليت ايجاد نماييم.
● مقدمه
امروزه توليد سرانه برق و روند رو به رشد آن يكي از شاخصهاي مهم نشان دهنده پيشرفت صنعتي، اقتصادي و افزايش رفاه كشور مي‌باشد.
با توجه به اهميت طرحهاي صنعتي در توسعه پايدار، صنعت برق نيز مشابه ديگر صنايع با توجه به افزايش شتاب توليد و مصرف انرژي برق در ۲۰ سال گذشته نقش به سزايي در آلودگي محيط زيست و سلامت و بهداشت انسان داشته است و بايستي اثرات نيروگاههاي حرارتي از نظر آلودگي آبي و گازي، جامد و آلودگيهاي صوتي و ميدانهاي الكتريكي و مغناطيسي ناشي از فعاليت نيروگاهها بر روي موجودات زنده به خصوص انسان مورد بررسي قرارگيرد.
درون تمام ارگانيزمهاي زنده، جريان الكتريكي و ميدانهاي الكتريكي با منشا داخلي وجود دارد كه در مكانيسمهاي پيچيده كنترل فيزيولوژيكي نظير اختلال در سيستمهاي عصبي، عضلاني، فعاليت ممبران سلولي و رشد وتكامل و ترميم بافتها نقش دارند. لذا لازم است ويژگيهاي مصنوعي آثار احتمالي آنها در سيستمهاي بيولوژيكي مورد بررسي قرار گيرند. ميدانهاي الكترومغناطيسي (EMF) ابتدا موجب سرگيجه، وزوز گوش، ضعف و خستگي و تار شدن ديد چشم و خواب آلودگي هنگام كار و همچنين پيدايش امراض ناشناخته، تغيير تركيبات خون، اختلال در سيستمهاي عصبي عضلاني، (نوروماسكولار)، دگرگوني ژنتيكي، بروز سرطانهايي چون لنفوم، لوسمي، طومورهاي مغزي، سرطان غدد بزاقي و اختلال در باروري در زنان و مردان مي‌شود.
ما در زندگي روزمره در محيط كار و خانه و مدرسه در معرض ميدان الكترومغناطيسي و الكتريكي هستيم و اين ميدان الكتريكي حاصل از توليد، انتقال و استفاده از الكتريسيته است. مطالعاتي در رابطه با سلامتي انسان در مورد كساني كه در معرض ميدان مغناطيسي و انواع سرطانها از نوع لوكمي و سرطان مغز صورت گرفته است.
تعدادي از محققان در مورد ارتباط قرار گرفتن در معرض ميدان مغناطيسي و سرطان ترديد دارند. زيرا تفسير آن از نظر بيولوژيكي مشكل است و نتايج تحقيقات متفاوت به نظر مي‌رسد و با هم هماهنگي ندارند. بسياري از محققان توافق بر اين دارند كه نياز به اطلاعات بيشتري در خصوص تاثيرات ميدانهاي الكتريكي و مغناطيسي بر سلامت انسان داريم.
هدف از اين مجموعه فراهم آوردن اطلاعاتي در مورد تاثيرات ميدانهاي الكترومغناطيسي در محيط كار و درك علمي نگرانيها و ترديدهايي است كه در اين مورد وجود دارد.
● ميدان الكترومغناطيسي
ميدان الكترومغناطيسي به وسيله خطوط نيرو، سيمهاي برق و تجهيزات الكتريكي توليد مي‌شود. تاكيد اين مجموعه در مورد ارتباط ميدان مغناطيسي با توليد و انتقال كاربرد نيروي الكتريكي است. ميدانهاي مغناطيسي خطوط نامرئي نيرو هستند كه در اطراف هر وسيله الكتريكي وجود دارند. ميدان الكتريكي با ولتاژ توليد مي‌شود و قدرت آن با افزايش ولتاژ افزايش مي‌يابد. واحد قدرت الكتريكي بر حسب متر بر ولت مي‌باشد.
ميدان مغناطيسي نتيجه شدت جريان در سيمها يا وسايل الكتريكي مي‌باشد و قدرت آن با افزايش ولتاژ افزايش مي‌يابد. ميدان مغناطيسي بر حسب گوس يا تسلا اندازه‌گيري مي‌شود. از طرف ديگر ميدان الكتريكي حتي وقتي كه تجهيزات الكتريكي خاموش مي شود برقرار است و مدت زيادي با منبع
جريان برق ارتباط خود را حفظ مي‌كند. ميدان الكتريكي با عبور كردن از موادي كه هادي الكتريسيته هستند كاهش مي‌يابد. به عبارت ديگر ميدانهاي مغناطيسي از بسياري مواد عبور مي‌كنند و بنابراين جلوگيري از عبور آن بسيار مشكل است. با وجود اين كه ميدانهاي الكتريكي و مغناطيسي در اطراف وسايل الكتريكي و خطوط نيرو وجود دارند. تحقيقات اخير بر روي پتانسيل اثرات ميدانهاي مغناطيسي بر سلامت انسان متمركز گرديده‌اند. با وجود اين كه بعضي مطالعات اپيدمولوژيك ارتباط افزايش خطر ابتلا به سرطان را با در معرض ميدان مغناطيسي قرار گرفتن گزارش نموده‌اند اما ارتباط مشابهي در مورد ميدانهاي الكتريكي گزارش نشده است.
توسعه سريع علم و تكنولوژي، موجودات زنده را تحت تابش طيف وسيعي از ميدانهاي الكترومغناطيسي قرار داده است. پيشرفت فناوري و صنعت برق انسانها را در تماس با ميدان الكترومغناطيسي حاصل از وسايل برقي از جمله كامپيوتر شخصي، فر برقي، تلويزيون، يخچال و ... نيز خطوط انتقال نيروي با ولتاژ زياد قرار داده است.
● اثرات ميدانهاي الكترومغناطيسي بر انسان
اپيدمولوژي، مطالعه بر روي احتمال شيوع بيماريها در جمعيتهاي انساني است و اينگونه تحقيقات غالبا عيني هستند تا تجربه‌اي و اين بدان معناست كه اينگونه يك اپيدميولوژيست نمي تواند تمامي فاكتورهايي را كه موجب بروز بيماري مي‌شود كنترل كند و يا در آزمايشگاه تحقيق كند اگرچه تحقيقات آزمايشگاهي در اطراف محيط انساني و حيواني كاملا در مورد انسان صدق نمي‌كند. اپيدميولوژيستها مي‌توانند عوامل به وجود آورنده سرطان را مشخص كنند كه شامل دود سيگار است و اين در حالي است كه در مورد ميدانهاي الكترومغناطيسي ارتباطي بين معاشرت و اپيدمولوژي وجود ندارد. بعضي دانشمندان كه در اين مورد مطالعه كرده‌اند ارتباط موجود بين ميدانهاي الكترومغناطيسي و سرطانهاي خاص را وقتي كه خطر كم باشد و يا اصلا نباشد مشكل تفسير مي‌كنند حتي اگر احتمال ابتلا به سرطان ناشي از ميدانهاي الكترومغناطيس بسيار اندك باشد بايد آن را جدي تلقي نمود. زيرا در ميان تعداد كثير افرادي كه در معرض ميدانهاي الكترومغناطيس هستند حتي يك احتمال ناچيز هم مي‌تواند باعث افزايش سرطان در سطح گسترده شود.
● ارتباط سرطان با مشاغل صنعت برق
از سال ۱۹۸۲ تعدادي از اپيدميولوژيستها مطالعات و آزمايشاتي در اين مورد انجام داده‌اند و گزارشي از بررسي بيماري لوكمي روي افراد كه در معرض ميدان الكترومغناطيس بوده‌اند با افرادي كه در مشاغل ديگر كار كرده‌اند ارائه داده‌اند. در ايالات متحده اين بيماري در بزرگسالان از هر ۱۰۰۰۰۰ نفر ۱۰مورد در سال مشاهده مي‌شود و اين مطالعات شامل افرادي مي‌شود كه مستقيما با وسايل الكترومغناطيسي سر و كار دارند مثل مهندسان برق و يا افراد شاغل در خطوط تلفن و تلويزيون و تعميرات راديويي، اپراتورهاي ايستگاه برق، الكتريسيته و جوشكار. مطالعات ديگر ارتباط بين شيوع سرطان مغز و يا مرگ و مير در مشاغل مشابه را نشان مي‌دهد. اين تحقيقات اولين بار توسط دكتر Samuel Milham در سال ۱۹۸۲ كامل شده است. همچنين مطالعاتي در مورد ارتباط سرطان سينه و قرار داشتن در معرض ميدان الكترومغناطيسي صورت گرفته است. سرطان سينه در مردان نادر است اما متاسفانه در زنان بسيار رايج است. در ايالات متحده سرطان سينه از هر ۱۰۰۰ نفر بيش از يك مورد در سال مشاهده شده است. در يك مركز تحقيقاتي دانشگاهي در كاروليناي شمالي ميزان مرگ زناني كه در معرض ميدانهاي الكترومغناطيسي قرار داشته‌اند در اثر ابتلا به سرطان سينه بيشتر از زناني بوده است كه در چنين مشاغلي كار نكرده‌اند. اما با توجه به اين كه عوامل ديگري مثل فاكتور سن در تولد اولين نوزاد و باروري و تاريخچه ارثي در ايجاد اين نوع سرطان مؤثر مي‌باشند، لذا باعث اختلال در اين تحقيق شده است و با در نظر گرفتن اين مشكلات و نداشتن اطلاعات كافي پي بردن به عامل اصلي ايجاد اين بيماري غير ممكن به نظر رسيد و مطالعات ديگري كه در ايالات متحده و كشورهاي ديگر انجام شده است نشان ميدهد كه حتي زناني كه در خانه كار مي كنند و در معرض ميدان الكترومغناطيسي بالايي قرار دارند با خطرپيشرفت سرطان سينه مواجه بوده‌اند.
● ساير امراض ناشي از ميدانهاي الكترومغناطيسي
بيماري آلزايمر (Alzheimer) نوعي بيماري است كه در افراد سن بالا بروز مي‌كند و باعث ضعف تمركز و اختلال در يادآوري خاطرات مي‌شود. مطالعه و تحقيقاتي كه در سال ۱۹۹۵ در فنلاند و كاليفرنيا انجام گرديده نشان مي دهد كارگراني كه بيشتر در معرض ميدان الكترومغناطيس قرار گرفته بودند بيشتر به اين بيماري مبتلا شده‌اند. طبق گزارش دكتر Stephanie London و همكاران در سال ۱۹۹۴ به اين نتيجه رسيده‌اند كه افراد شاغل در صنايع برق و تلفن نسبت به افراد شاغل در ديگر صنايع بيشتر در معرض ميدانهاي الكترومغناطيس قرار دارند.
● اثرات بيولوژيكي ميدانهاي الكترومغناطيس
اين مجموعه اطلاعاتي در مورد تاثيرات ميدانهاي الكترومغناطيسي بر روي حيوانات و تقسيم سلولي به ما مي‌دهد و تاثيرات بيولوژيكي شامل تغييراتي در اعمال سلولها و بافتها و تغييراتي در فعاليت مغز استخوان انسان و ضربان قلب مي‌شود. اين قبيل مطالعات بر روي حيوانات آزمايشگاهي و حيوانات اهلي و نيز انسان بررسي شده است. طول موج، مدت در معرض امواج بودن، فاصله نسج با موج در تكثير سلولي و جزئيات تكثير مورد بررسي قرار گرفته است و باعث اختلال در تكثير سلولي در مرحله DNA سازي و نيز باعث افزايش بروز نقص مادرزادي و اختلال باروري و موتاسيونهاي مختلف مي‌شود و اين اختلال با مدت مجاورت با ميدان الكترومغناطيسي و نوع موج متناسب بوده است.
 

javahermarket



:: بازدید از این مطلب : 173
|
امتیاز مطلب : 10
|
تعداد امتیازدهندگان : 5
|
مجموع امتیاز : 5
تاریخ انتشار : شنبه 14 اسفند 1389 | نظرات ()
نوشته شده توسط : حامد

مندلیف و لوتار میردر موردخواص عنصرهاو ارتباط انها بررسی های دقیق تری انجام دادندودر سال ۱۸۶۹م به این نتیجه رسیدند که خواص عنصرها تابعی تناوبی از جرم انهاست.به این معنا که اگر عنصرها را به ترتیب افزایش جرم اتمی مرتب شوند نوعی تناوب در انها اشکار میگرددوپس ازتعداد معینی از عنصرها عنصرهایی با خواص مشابه خواص پیشین تکرار می شوند .
مندلیف در سال ۱۸۶۹ بر پایه ی قانون تناوب جدولی از ۶۳عنصر شناخته شده ی زمان خود منتشر کرد .در فاصله ی بین سالهای ۱۸۶۹ تا ۱۸۷۱م مندلیف هم مانند لوتار میر با بررسی خواص عنصرها و ترکیب های انها متوجه شد که تغییرهای خواص شیمیایی عنصرها مانند خواص فیزیکی انها نسبت به جرم اتمی روند تناوبی دارد.از این رو جدول جدیدی در ۸ ستون و۱۲سطر تنظیم کرد.او با توجه به نارسایی های جدول نیو لندز ولوتار میر و حتی جدول قبلی خود جدولی تقریبابدون نقص ارایه دادکه فراگیر وماندنی شد.

● شاهکارهای مندلیف در ساخت شهرک عناصر :
▪ روابط همسایگی:
دانشمندان پیش از مندلیف در طبقه بندی عناصر هر یک را جداگانه و بدون وابستگی به سایر عناصر در نظر می گرفتند.اما مندلیف خاصیتی را کشف کرد که روابط بین عنصرها را به درستی نشان میدادو ان را پایه تنظیم عناصر قرار داد.
▪ وسواس وی:
او برخی از عناصر را دوباره بررسی کرد تا هر نوع ایرادی را که به نادرست بودن جرم اتمی از بین ببرد.در برخی موارد به حکم ضرورت اصل تشابه خواص در گروهها را بر قاعده افزایش جرم اتمی مقدم شمرد.
▪ واحدهای خالی:
در برخی موارد در جدول جای خالی منظور کردیعنی هر جا که بر حسب افزایش جرم اتمی عناصر باید در زیر عنصر دیگری جای می گرفت که در خواص به ان شباهتی نداشت ان مکان را خالی می گذاشتو ان عنصر را در جایی که تشابه خواص رعایت میشد جای داد.این خود به پیش بینی تعدادی ا زعنصرهای ناشناخته منتهی شد.
▪ استقبال از ساکنان بعدی:
مندلیف با توجه به موقعیت عنصرهای کشف نشده و با بهره گیری از طبقه بندی دوبرایزتوانستخواص انها را پیش بینی کند.برای نمونه مندلیف در جدولی که در سال ۱۸۶۹ تنظیم کرده بودمس و نقره وطلا را مانند فلزی قلیایی در ستون نخست جا داده بود اما کمی بعد عناصر این ستون را به دو گروه اصلی و فرعی تقسیم کرد.سپس دوره های نخست و دوم و سوم هر یک شامل یک سطر و هر یک از دوره های چهارم به بعد شامل دو سطر شده وبه ترتیب از دوره های چهارم به بعد دو خانه اول وشش خانه اخر از سطر دوم مربوط به عناصر اصلی ان دوره و هشت خانه باقی مانده ی سطر اول و دو خانه اول سطر دوم مربوط به عناصر فرعی بود
▪ ساخت واحد مسکونی هشتم:
مندلیف با توجه به این که عناصراهن وکبالت ونیکل وروتینیم ورودیم وپالادیم واسمیم وایریدیم وپلاتینخواص نسبتا با یکدیگر دارند این عناصر را در سه ردیف سه تایی و در ستون جداگانه ای جای دادو به جدول پیشین خود گروه هشتم ا هم افزود. در ان زمان گازهای نجیب شناخته نشده بوداز این رودر متن جدول اصلی مندلیف جایی برای این عناصر پیش بینی نشد. پس از ان رامسی و رایله در سال ۱۸۹۴ گاز ارگون را کشف کردند و تا سا ل ۱۹۰۸ م گازهای نجیب دیگرکشف شد و ظرفیت شیمیایی انها ۰ در نظر گرفته شدو به گازهای بی اثر شهرت یافتند.
▪ اسانسور مندلیفبه سوی اسمان شیمی :
جدول مندلیف در تنظیم و پایدار کردن جرم اتمی بسیاری از موارد مندلیفنادرست بودن جرم اتمی برخی از عناصر را ثابت و برخی دیگر را درست کرد .جدول تناوبی نه تنها به کشف عنصرهای ناشناخته کمک کرد بلکه در گسترش و کامل کردن نظریه ی اتمی نقش بزرگی بر عهده داشت و سبب اسان شدن بررسی عناصر و ترکیب های انها شد.
● مجتمع نیمه تمام:
جدول تناوبی با نارسایی هایی همراه بود که عبارتند از :
۱) جای هیدروژن در جدول بطور دقیق مشخص نبود .گاهی ان را بالا ی گروه فلزهای قلیایی و گاهی بالای گروه های گروه هالوژن ها جا میداد.
۲) در نیکل و کبالت که جرم اتمی نزدیک به هم دارند خواص شیمیایی متفاوت است و با پایه قانون تناوبی ناسازگاری دارد.
۳) کبالت را پیش از نیکل و همچنین تلور را پیش از ید جای داد که با ترتیب صعودی جرم اتمی هم خوانی نداشت .با پیش رفت پژوهش ها و با کشف پرتوایکس و عنصرهاو بررسی دقیق طیف انها عدد اتمی کشف و اشکار شد و عناصر بر حسب افزایش عدد اتمی مرتب و نار سایی های جزیی موجود در جدول مندلیف از بین رفت .زیرا تغییرات خواص عناصر نسبت به عدد اتمی از نظم بیشتری برخوردارست تا جرم اتمی انها .
۴) سال پس از نشر جدول مندلیف بوابو در ات به روش طیف نگاری اکا الومینیوم را کشف کرد و گالیم نامید و ۴ سال بعد نیلسون اکا بور را کشف کرد و اسکاندیم نامید و هفت سال بعد ونیکلر هم اکا سیلسیم را از راه تجربه طیفی کشف کرد و ان را ژرمانیم نامید.
● تغییرات خواص عناصر در دوره ها و گروههای جدول:
۱) تغییرات شعاع اتمی :
در هر گروه با افزایش عدد اتمی شعاع اتمی افزایش می یابد ودر هر دوره با افزایش عدد اتمی شعاع اتمی به تدریج کوچکتر می گردد.
۲) تغییرات شعاع یونی :
شعاع یون کاتیون هر فلز از شعاع اتمی ان کوچکتر و شعاع هر نا فلز از شعاع اتمی ان بزرگتر است.به طور کلی تغییرهای شعاع یونی همان روند تغییرات شعاع اتمی است.
۳) تغییرات انرژی یونش:
در هر دوره با افزایش عدد اتمی انرژی یونش افزایش
می یابد و در هر گروه با افزایش لایه های الکترونی انرژی یونش کاهش می یابد.
۴) تغییرات الکترون خواهی :
در هر دوره با افزایش عدد اتمی انرژی الکترونخواهی افزایش می یابدودر هر گروه با افزایش عدد اتمی اصولا انرژی الکترون خواهی از بالا به پایین کم می شود .
۵) تغییرات الکترونگاتیوی:
در هر دوره به علت افزایش نسبتا زیا د شعاع اتمی الکترونگاتیوی عناصر کم میشود و در هر دوره به علت کاهش شعاع اتمی الکترونگاتیوی عناصر افزایش می یابد .
۶) تغییرتعدادالکترونهای لایه ظرفیتوعدد اکسایش:در هر دوره از عنصری به عنصر دیگریک واحد به تعداد الکترون ها ی ظرفیت افزوده میشود و تعداد این الکترونها و عدد اکسایش در عنصرهای هر گروه با هم برابرند.
۷) تغییرات پتانسیل الکترودی :
در ازای هردوره با افزایش عدد اتمی توانایی کاهندگی عنصرها کاهش می یابد و توانایی اکسیدکنندگی انها افزایش می یابد .از این روفلزهایی که در سمت چپ دوره ها جای دارندخاصیت کاهندگی ونا فلزهایی که در سمت راست دوره ها جای دارندتوانایی اکسید کنندگی دارند.در موردعناصر یک گروه توانایی اکسید ?کنندگی با افزایش عدد اتمی وپتانسیل کاهش می یابد.
۸) تغییرات توانایی بازی هیدروکسید:
توانایی بازی هیدروکسیدعناصر در گروهها ازبالا به پایین افزایش می یابد اما در دوره از سمت چپ به راست رو به کاهش است.
۹) تغییرات دما وذوب یا جو ش:
در هر دوره دمای ذوب و جوش تا اندازه ای به طورتناوبی تغییر می کند ولی این روندمنظم نیست و در موردعناصرگروهها نیز روندواحدی وجود ندارد

javahermarket



:: بازدید از این مطلب : 149
|
امتیاز مطلب : 17
|
تعداد امتیازدهندگان : 5
|
مجموع امتیاز : 5
تاریخ انتشار : جمعه 13 اسفند 1389 | نظرات ()
نوشته شده توسط : حامد

پیوند یونی

 

 

پیوند یونی نوعی از پیوند شیمیایی است که برپایه نیروی الکترواستاتیک بین دو یون با بار مخالف شکل می‌گیرد.

ترکیبات یونی متشکل از تعداد زیادی آنیون و کاتیون هستند که با طرح معین هندسی در کنار هم قرار گرفته‌اند و یک بلور بوجود می‌آورند. هر بلور ، به سبب جاذبه‌های منفی ـ مثبت یونها به هم ، نگهداشته شده است. فرمول شیمیایی یک ترکیب یونی نشانه ساده‌ترین نسبت یونهای مختلف برای به وجود آوردن بلوری است که از نظر الکتریکی خنثی باشد.

ماهیت یون

وقتی اتم‌ها به یون تبدیل می‌شوند، خواص آنها شدیدا تغییرمیکند. مثلاً مجموعه‌ای از مولکولهای برم قرمز است. اما یونهای در رنگ بلورماده مرکب هیچ دخالتی ندارند. یک قطعه سدیم شامل اتم‌های سدیم‌ نرم است. خواص فلزی دارد و بر آب به شدت اثر می‌کند. اما یونهای در آب پایدارند.

مجموعه بزرگی از مولکولهای کلر ، گازی سمّی به‌رنگ زرد مایل به سبز است، ولی یونهای کلرید مواد مرکب رنگ ایجاد نمی‌کنند و سمّی نیستند. به همین لحاظ است که یونهای سدیم و کلر را به صورت نمک طعام می‌توان بدون ترس از واکنش شدید روی گوجه فرنگی ریخت. وقتی اتم‌ها به صورت یون در می‌آیند، ماهیت آنها آشکارا تغییر می‌کند.

 خواص مواد مرکب یونی

رسانایی الکتریکی : رسانایی الکتریکی مواد مرکب یونی مذاب به این علت است که وقتی قطب‌هایی با بار مخالف در این مواد مذاب قرار گیرد و میدان الکتریکی برقرارشود، یونها آزادانه به حرکت در می‌آیند. این حرکت یونها بار یا جریان را از یک‌جا به جای دیگر منتقل می‌کنند. در جسم جامد که یونها بی‌حرکت‌اند و نمی‌توانند آزادانه حرکت کنند، جسم خاصیت رسانای الکتریکی ندارد.


سختی : سختی مواد مرکب یونی به علت پیوند محکم میان یونهای با بار مخالف است. برای پیوندهای قوی انرژی بسیاری لازم است تا یون‌ها از هم جدا شوند و امکان حرکت آزاد حالت مذاب را پیداکنند. انرژی زیاد به معنی نقطه جوش بالا است که خود از ویژگی‌های مواد مرکب یونی است.


شکنندگی : مواد مرکب یونی شکننده‌اند. زیرا که ساختار جامد آنها آرایه منظمی از یونهاست. مثلاً ساختار سدیم کلرید (NaCl) را در نظر بگیرید. هرگاه یک سطح از یونها فقط به فاصله یک یون در هر جهت جابجا شود، یونهایی که بار مشابه دارند درکنار یکدیگر قرار می‌گیرند و یکدیگر را دفع می‌کنند و چون جاذبه‌ای در کار نیست بلور می‌شکند. سدیم کلرید را نمی‌توان با چکش کاری ، به ورقه‌های نازک تبدیل کرد. با چنین عملی بلور نمک خرد و از هم پاشیده می‌شود.


 گروههای حاوی پیوند یونی

عناصرگروه IA (فلزات قلیایی) یعنی Li ، Na ، K ، Rb ، Cs ، هر یک به ترتیب یک الکترون بیشتر از گازهای نجیب ، (He ، Kr ، Ne ، Ar ، Xe) دارند. اگر هر یک از این فلزات از هر اتم یک الکترون از دست بدهند، جزء باقیمانده آرایش الکترونی گاز نجیب متناظر خود را پیدا می‌کند. مثلاً ، Li یک الکترون والانس در آرایش حالت پایه دارد. از دست دادن یک الکترون موجب می‌شود که Li ساختار الکترونی He را پیداکند. یک اتم Li که فقط دو الکترون و سه پروتون داشته باشد، بار +۱ خواهد داشت.

یک اتم باردار مانند یا یک گروه از اتم‌های باردار ، مانند گروه سولفات را یون می‌گویند.

عناصر گروه IIA (فلزات قلیایی خاکی) هریک دو الکترون والانس دارند. پس برای اینکه mg ، ca ، sr ، ba ساختار گاز نجیب را به دست آورند اتم‌های هرعنصر باید دو الکترون از دست بدهند. از دست رفتن دو الکترون موجب می‌شود که دو پروتون در هسته خنثی نشده بماند. پس هر یون بار +۲ خواهد داشت. برای جدا شدن سومین الکترون لازم است جفت الکترونهای تراز اصلی با انرژی پایین‌تر شکسته شود. این امر انرژی زیادتری می‌خواهد. جداشدن الکترونها از فلزات و تشکیل یونهای مثبت حاصل از آنها را می‌توان به راههای مختلف ترسیم کرد.

پس جدا شدن یک الکترون از یک اتم معین جداشدن الکترونهای بعدی به ترتیب مشکلتر می‌شود. زیرا با از دست رفتن هر الکترون بار مؤثر زیادتری می‌شود و الکترونهای باقیمانده را محکمتر نگاه می‌دارد. بطور خلاصه یونهای مثبت وقتی تشکیل می‌شوند که اتم‌های فلزی یک الکترون (گروهIA) دو الکترون (گروهIIA) و یا سه الکترون (گروهIIIA) به اتم‌های غیر فلزی می‌دهند. یونهای حاصل آرایش الکترونی یکسان با یک گاز نجیب دارند.

عناصر گروه VIIA (هالوژنها) یونهای مثبت در حضور یونهای منفی پایدار می‌شوند. خنثی شدن بار ، هر دو نوع یون را پایدار می‌کند. یونهای منفی پایدار ، از اتم‌هایی که شش یا هفت الکترون والانس دارند، تولید می‌شوند. اینگونه اتم‌ها آنقدر الکترون بدست می‌آورند تا ساختار گاز نجیب را پیدا کنند. مثلاً اتم‌های عناصر گروه VIIA (هالوژن‌ها) هفت الکترون والانس دارند و هر یک ، یک الکترون می‌خواهند تا آرایش الکترونی یک گاز نجیب را پیدا کنند.

اگر اتم‌های F ، Cl ، Br ، I هر یک ، یک الکترون بدست آورند، یونهای حاصل یعنی ، ، ، به ترتیب آرایش الکترونی را خواهند داشت.

عناص گروه VIA (گروه اکسیژن) اتم عناصر (VIA) برای رسیدن به ساختار الکترونی یک گاز نجیب هریک دو الکترون نیاز دارند. اضافه شدن دو الکترون به هر اتم ، سبب تولید می‌شود. روند به دست آوردن الکترون توسط غیرفلزات ، مانند از دست دادن الکترون توسط فلزات را می‌توان به راههای متفاوت ترسیم کرد. بطور خلاصه غیرفلزات یک ، دو ، یا سه الکترون از فلزات می‌گیرند و یون منفی ایجاد می‌کنند.

این یونهای منفی همگی الکترونهای والانس جفت شده و آرایش هشت الکترونی پایدار گازهای نجیب را دارند.

 

فرمول شیمیایی مواد مرکب یونی فرمول شیمیایی یک ماده مرکب از لحاظ الکتریکی خنثی است. خنثی بودن الکتریکی مستلزم آن است که شمار بارهای مثبت و منفی در بلور ماده مرکب برابر باشند. دو برای هر ، سه یون برای دو یون Al^۳+ و الی آخر. در بلور نمک طعام یونهای با جاذبه الکتریکی میان بارهای مخالف ، در جای خود نگاه داشته شده‌اند.

علاوه بر این ، برای خنثی بودن این ماده مرکب باید نسبت یونهای سدیم به یونهای کلرید ۱ به ۱ باشد. در این صورت ساده‌ترین فرمول آن خواهد بود. در ساختار بلورین هر یون سدیم با هر شش یون کلرید اطراف آن جذب می‌شود. به همین طریق هر یون کلرید با هر شش یون سدیم اطراف آن جذب می‌شود.

در ساختارهای یونی هیچ مولکول تک اتمی وجود ندارد، یعنی هیچ یون خاصی وجود ندارد که منحصرا به یک یون دیگر بپیوندد

javahermarket



:: بازدید از این مطلب : 234
|
امتیاز مطلب : 17
|
تعداد امتیازدهندگان : 5
|
مجموع امتیاز : 5
تاریخ انتشار : جمعه 13 اسفند 1389 | نظرات ()
نوشته شده توسط : حامد

 

 
شايد سفر زمانى بسيار راحت تر از آن باشد كه تصور مى كنيم
ماركوس چاون
ترجمه: شهاب شعرى مقدم
 
خلاصه مقاله
۱- براساس نظريه ريسمان ها، جهان ما پوسته اى ۴ بعدى است كه در يك فضا- زمان ۱۰ بعدى شناور است.
۲- درصورت انحناى شديد ابعاد فراسوى جهان ما، هر ذره اى كه قادر به خروج از ابعاد چهارگانه اين جهان باشد، مى تواند با ميان بر زدن از ميان بعد پنجم، حتى از نور هم پيشى بگيرد.
۳- حركت سريع تر از نور، از ديد برخى از ناظرهاى اين جهان، به معناى سفر در زمان و بازگشت به گذشته است.
۴- گراويتون ها و نوترينوهاى خنثى ذراتى هستند كه امكان خروج از جهان ما را دارند. بنابراين اين ذرات قادرند در زمان سفر كنند.
۵- بدين ترتيب طى چند دهه آينده و با كمك نوترينوهاى خنثى قادر خواهيم بود ايده سفر در زمان را به طور تجربى بيازماييم.


احتمالاً عنوان جديدترين مقاله علمى «هانريش پاس»
Pas.H
 براى شما بيش از حد عجيب و غريب و نامفهوم به نظر برسد: «منحنى هاى زمان گونه بسته در جهان هاى پوسته اى خميده غيرمتقارن» ! اما براى آنهايى كه به فيزيك نظرى مسلط هستند اين مقاله از يك حقيقت شگفت انگيز پرده بردارى مى كند. براساس اين مقاله، ساخت ماشين زمان، بسيار راحت تر و دردسترس تر از آن چيزى  است كه تاكنون تصور مى شد.
پس ديگر كند و كاو طاقت فرسا در جهان براى يافتن سياه چاله هاى چرخان يا كرم چاله هاى عجيب و غريب را ( كه تا پيش از اين به نظر مى رسيد كه تنها راه هاى سفر در زمان باشند) فراموش كنيد. براساس نظر «پاس» و همكارانش در دانشگاه هاوايى، در سفر در زمان، همواره و در همه جا در جهان بر روى ما گشوده است. نكته جالب تر اينكه برخلاف اغلب سناريوهاى قبلى، صحت اين ايده را مى توان همين جا بر روى زمين هم به معرض آزمون گذاشت. «بيل لوئيز»
Louis.B
 كه فيزيكدانى از آزمايشگاه ملى لس آلاموس در نيومكزيكو و يكى از مسئولان ارشد آزمايش معروف باريكه نوترينوى
MiniBoone
 در آزمايشگاه شتاب دهنده فرمى است دراين باره مى گويد: «به نظر من ايده اى كه «پاس» ارائه كرده، ايده اى بسيار شگفت انگيز و فوق العاده است. اما هم اكنون مسئله مهم، نشان دادن صحت اين ايده است.»
البته فيزيكدانانى نظير «لوئيز» حق دارند كه كمى محتاط باشند. در واقع بايد گفت كه هرچند هيچ يك از قوانين طبيعت امكان سفر در زمان را عملاً رد نمى كنند، اما فيزيكدان ها از ديرباز با اين مسئله ميانه چندان خوشى نداشته اند، چرا كه سفر در زمان مى تواند فرض پذيرفته شده تقدم علت بر معلول را زير سئوال ببرد. از طرفى نقض قانون موجبيت مى تواند اوضاع جهان را به هم بريزد. به عنوان مثال شما مى توانيد به گذشته سفر كرده و از تولد خودتان جلوگيرى كنيد.
وجود چنين تناقض نماهايى منجر به ارائه حدسى از سوى «استفن هاوكينگ» شد كه اصطلاحاً «حدس حفاظت از تاريخ» ناميده مى شود. براساس اين حدس بايد اصولى در فيزيك (كه هنوز كشف نشده اند) وجود داشته باشند كه از امكان وقوع سفر در زمان جلوگيرى كنند. تا همين سه سال پيش هيچ كس نتوانسته بود جزئيات چنين اصولى را ترسيم كند تا اينكه در سال ۲۰۰۳ گروهى از محققان كه بر روى نظريه ريسمان ها (كه بهترين گزينه براى رسيدن به نظريه اى واحد در فيزيك است) كار مى كردند، مدعى شدند كه براساس اين نظريه، ساز و كارهايى وجود دارند كه مى توانند از سفر در زمان جلوگيرى كنند
تا به اينجا ظاهراً همه چيز درست بود. اما حتماً مى دانيد كه فيزيكدان ها در قانع نشدن به يك جواب، شهره خاص و عام هستند. اين گونه بود كه «پاس» و دو نفر از همكارانش به نام هاى «سنديپ پاكواسا»
Pakvasa.S
 از دانشگاه هاوايى و «توماس ويلر»
Weiler.T
 از دانشگاه وندربيلت در تنسى شروع به تجزيه و تحليل مجدد نظريه ريسمان ها كردند. اين نظريه، اجزاى بنيادين جهان را نه به صورت ذرات نقطه اى بلكه به شكل ريسمان هاى مرتعش انرژى مى داند. در اين نظريه، ارتعاش سريع تر اين ريسمان ها معادل جرم بيشتر ذرات است.
اين ريسمان هاى مرتعش مى توانند نحوه هزاران نوع برهم كنش مابين تمامى ذرات بنيادى نظير كوارك ها و الكترون ها را توضيح دهند. اما نكته اى اساسى در مورد اين نظريه وجود دارد: اين نظريه تنها زمانى جواب مى دهد كه اين ريسمان هاى انرژى به جاى چهار بعد معمول، در يك فضا- زمان ۱۰ بعدى در حال ارتعاش باشند. در واقع براساس نظريه ريسمان ها، اين ابعاد اضافى يا فوق العاده كوچك هستند، به  طورى كه تاكنون متوجه حضور آنها نشده ايم و يا بسيار بزرگ و به گونه اى خميده هستند كه باز هم تا به حال از ديد ما پنهان مانده اند.
بنابر نظريه ريسمان ها، جهان ما در واقع پوسته اى چهار بعدى است كه در يك فضا- زمان
10 بعدى شناور است. اما از آنجايى كه تمامى ذرات و نيروهاى جهان ما مقيد به پوسته چهار بعدى اين جهان هستند و امكان خروج از آن را ندارند، بنابراين ما نيز تاكنون از وجود ابعاد بالاتر خارج از جهان خود (يعنى همين چهار بعدى كه تجربه هاى ما محدود به آن است) هيچ اطلاعى نداشتيم. «پاس» در اين باره مى گويد: «اگر واقعاً چنين باشد پس امكان ميان بر زدن از ميان اين ابعاد بالاتر نيز وجود خواهد داشت و همين مسيرهاى ميان بر است كه سفر در زمان را ممكن مى سازد.»
تجسم چنين ميان برهايى كار چندان دشوارى نيست. فرض كنيد كه پوسته چهار بعدى جهان ما كه در بعد بالاتر (بعد پنجم) جاى گرفته همانند كاغذى باشد كه از وسط تا شده و دو انتهاى آن بر روى همديگر قرار گرفته است. در اين صورت مى توان از نقطه اى واقع بر پوسته جهان، آن را ترك كرده و وارد بعد بالاتر شد و پس از پيمودن مسيرى كوتاه در بعد پنجم دوباره و در نقطه اى ديگر در مقابل آن به جهان بازگشت. جالب اينجاست كه اگر اين صفحه خم شده (يعنى جهان ما) صفحه اى بسيار بزرگ باشد، در اين صورت براى پيمودن همين مسير از روى خود صفحه (يعنى از درون جهان) مى بايست فاصله اى بسيار طولانى را طى مى كرديم اما با خروج از پوسته جهان و عبور از ميان ابعاد بالاتر عملاً ميان بر خواهيم زد.
اما مسئله اى در ارتباط با تصويرى كه ارائه شد وجود دارد. اگرچه اساساً مى توان جهانى را تصور كرد كه بتوان از يك سوى آن به سوى ديگر ميان بر زد اما مسئله آن است كه جهان ما نمى تواند مشابه چنين جهانى باشد. علت اين امر آن است كه فضا- زمان چنين جهانى به شدت خميده بوده و نتيجتاً با نظريه نسبيت خاص اينشتين (كه هندسه فضا را تخت يا اقليدسى مى داند) ناسازگار خواهد بود. از آنجايى كه آزمون هاى تجربى متعددى تاكنون صحت پيش بينى هاى نسبيت خاص را در حوزه محلى موقعيت ما در جهان تا دقتى بالاتر از يك به يك ميليون تاييد كرده اند، بنابراين بسيار بعيد است كه پوسته چهاربعدى جهان ما همانند يك كاغذ تاشده باشد.
بنابراين پاس، پاكواسا و ويلر از فرض ديگرى استفاده كردند. آنها فضا- زمانى را در نظر گرفتند كه در آن، جهان ما يك پوسته چهاربعدى تخت بوده اما اين پوسته تخت، در ابعاد بالاترى شناور است كه به شدت خميده هستند. از آنجايى كه در اين تصوير، جهان ما تخت است بنابراين نسبيت خاص همچنان در آن معتبر خواهد بود. اما ميزان انحناى ابعاد بالاتر خارج از جهان ما به حدى است كه نسبيت خاص در آن ابعاد ديگر اعتبار خود را از دست خواهد داد. اين امر بدان معناست كه هر چيزى كه بتواند از ابعاد جهان ما خارج شده و وارد بعد پنجم شود قادر خواهد بود يكى از بنيادى ترين اصول نسبيت خاص را زير پا بگذارد: چنين چيزى قادر است با سرعتى فراتر از سرعت نور حركت كند.
اين امر، نتايج خارق العاده اى را براى ساكنان پوسته جهان ما در بر خواهد داشت. در نظر اشخاصى كه در اين جهان زندگى مى كنند، هر چيزى كه مسيرى ميان بر را از ميان ابعاد بالاتر هستى طى كند، ناگهان از نقطه اى از جهان ما غيب شده و در نقطه اى ديگر در جهان ظاهر مى شود. در نظر برخى از ساكنان جهان، هويت مزبور فاصله مابين اين دو نقطه را حتى سريع تر از نور طى خواهد كرد. اما شگفت انگيزتر آن كه در نظر برخى ديگر، آن چيز حتى در زمان سفر كرده و به گذشته باز خواهد گشت. علت اين امر آن است كه براساس نظريه نسبيت خاص، در برخى از چارچوب هاى مرجع، حركت سريع تر از نور معادل سفر در زمان و بازگشت به گذشته است. «پاس» در اين باره مى گويد: «چنين مسيرهاى ميان برى كه از ابعاد بالاتر هستى در خارج از جهان ما عبور مى كنند اصطلاحاً «منحنى هاى زمان گونه بسته» ناميده مى شوند. يافتن چنين مسيرهايى در واقع معادل دستيابى به رمز ماشين زمان است.»
 
خروج از رويه
اما اين ايده سفر در زمان نيازمند حل يك مشكل است و آن يافتن راهى است براى خروج از جهان ما و ورود به ابعاد بالاتر هستى. اما انجام چنين كارى چگونه ميسر خواهد بود؟ خوشبختانه نظريه ريسمان ها راهى را براى اين كار در پيش روى ما قرار مى دهد. براساس اين نظريه تقريباً تمامى ريسمان هاى نمايانگر ذرات بنيادى جهان ما ريسمان هايى باز هستند و دو انتهاى اين ريسمان ها همواره مقيد به پوسته جهان ماست. به همين دليل هم اين ذرات هيچ گاه نخواهند توانست از جهان ما خارج شده و با ورود به بعد پنجم، مسير ميان برى را در فضا- زمان بپيمايند. اما در اين ميان دو استثناى مهم نيز وجود دارد: يكى ذره (ريسمان) حامل نيروى گرانش به نام گراويتون و ديگرى نوع چهارمى از نوترينو كه در برابر سه نوع معمول آن اصطلاحاً نوترينوى خنثى ناميده مى شود (منظور از نوترينوى خنثى، خنثى بودن آن به لحاظ الكتريكى نيست چراكه نوترينوهاى معمولى نيز همگى فاقد بار الكتريكى بوده و هيچ يك در برهم كنش الكترومغناطيسى شركت نمى كنند. در واقع منظور از عبارت خنثى آن است كه اين نوترينوها داراى فوق بار ضعيف صفر هستند و بنابراين حتى در برهم كنش ضعيف هم شركت نمى كنند و تنها در برهم كنش گرانشى وارد مى شوند). مطابق نظريه ريسمان، اين دو ذره برخلاف ساير ذرات، ريسمان هاى حلقوى بسته هستند. از آنجايى كه اين ريسمان هاى بسته عملاً هيچ انتهاى مشخصى ندارند كه به پوسته جهان مقيد باشند، بنابراين مى توانند آزادانه از جهان ما خارج شده و به ساير ابعاد هستى سفر كنند.
همين ويژگى گراويتون ها است كه به نظريه پردازان ريسمان كمك مى كند تا ضعيف بودن نيروى گرانش را نسبت به ساير نيروهاى بنيادى نظير الكترومغناطيس تبيين كنند. بر اين اساس، ضعيف بودن نيروى گرانش در واقع بدان علت است كه تعداد بسيارى از گراويتون هاى گسيل شده توسط ذره مبدأ پيش از آنكه فرصت رسيدن به ذره مقصد را پيدا كنند از جهان ما خارج خواهند شد و به ابعاد بالاتر درز مى كنند. اما شگفت انگيزتر آنكه خروج اين ذرات از ابعاد جهان ما و ميان بر زدن آنها از ميان ابعاد بالاتر هستى بدان معنا است كه گراويتون ها و نوترينوهاى خنثى اساساً توانايى سفر در زمان را دارند. بنابراين «پاس» معتقد است كه به كمك اين ذرات مى توان امكان سفر در زمان را به طور تجربى به محك آزمون گذاشت.
اما چنين كارى چندان آسان نخواهد بود چراكه هيچ كس تاكنون موفق به دام اندازى يك گراويتون يا نوترينوى خنثى نشده است، زيرا آشكارسازى اين ذرات بسيار نامحتمل و دشوار است. در هر ثانيه هزاران ميليارد نوترينوى معمولى از بدن ما مى گذرند، اما ما متوجه عبور هيچ يك از آنها نمى شويم چراكه اين ذرات، بسيار به ندرت با الكترون ها و اتم ها برهم كنش انجام  مى دهند. اما احتمال برهم كنش نوترينوهاى خنثى با ماده حتى از نوترينوهاى معمولى هم كم تر است چراكه نوترينوهاى خنثى تنها از طريق برهم كنش فوق العاده ضعيف گرانشى و نيز تبادل بوزون هيگز با ماده برهم كنش دارند. (بوزون هيگز، ذره اى است كه هنوز به طور تجربى كشف نشده است. جرم هريك از ذرات بنيادى در واقع ماحصل برهم كنش آنها با اين ذره است.)
با همه اين احوال «پاس» و همكارانش معتقدند كه براساس مكانيك كوانتومى راهى براى اين مسئله وجود دارد. قوانين فيزيك كوانتومى حاكى از آن است كه نوترينوها مى توانند از نوعى به نوع ديگر تبديل شوند. آزمايش هاى انجام شده در ژاپن و ايالات متحده نيز كه براى آشكارسازى نوترينوهاى خورشيدى و نيز نوترينوهاى حاصل از ساير منابع اخترفيزيكى طراحى شده اند، به طور تجربى موفق به تاييد امكان تبديل نوترينوها از نوعى به نوع ديگر شده اند. همين مسئله در مورد نوترينوهاى خنثى هم صادق است به گونه اى كه اين نوترينوها نيز مى توانند به نوترينوهاى معمولى (كه با سهولت بسيار بيشترى قابل آشكارسازى هستند) تبديل شوند و بالعكس. نكته حائز اهميت آنكه احتمال اين تبديل، به تناسب چگالى محيطى كه نوترينوها در حال عبور از آن هستند، افزايش مى يابد.
همين نكته بود كه سبب شد تا «پاس» و همكارانش پيشنهاد انجام آزمايشى را ارائه دهند كه خواهد توانست امكان سفر در زمان را به طور تجربى نشان دهد. در اين آزمايش، باريكه اى از نوترينوهاى معمولى از يك مركز تحقيقاتى واقع در قطب جنوب به سوى آشكارسازى در روى خط استوا ارسال خواهد شد. در هنگام عبور باريكه از ميان كره زمين، بخشى از نوترينوها به نوترينوهاى خنثى بدل خواهند شد. ازآنجايى كه اين نوع نوترينوها قادرند از ميان ابعاد بالاتر فراسوى جهان ما ميان بر بزنند بنابراين زودتر از بقيه به آن سوى كره زمين خواهند رسيد، به گونه اى كه گويى از نور هم سريع تر حركت كرده اند. اما همين كه اين نوترينوها از آن سوى زمين خارج شده و وارد اتمسفر شوند، دوباره تغيير نوع داده و به نوترينوهاى معمولى (كه قابل آشكارسازى هستند) بدل خواهند شد. اما با توجه به چرخش زمين و در كمال تعجب، اين نوترينوها (كه سريع تر از نور حركت كرده بودند) در زمانى پيش از زمان آغاز حركت خود به مقصد خواهند رسيد!
هرچند انجام چنين آزمايشى فراتر از توانمندى هاى فناورى فعلى بشر است، اما همان طور كه «پاس» هم به درستى بدان اشاره دارد، انجام اين آزمايش طى حداكثر۵۰ سال آينده ميسر خواهد شد. البته تحقق چنين آزمايشى پيش از هرچيز نيازمند صحيح بودن دو پيش فرض است. شرط اول، وجود نوترينوهاى خنثى است. اگرچه اكنون بسيارى از فيزيكدان ها معتقدند كه چنين نوترينوهايى بايد وجود داشته باشند، اما اين امر هنوز به   طور تجربى تاييد نشده است. و شرط دوم آن است كه همان طور كه «پاس» فرض كرده است ما واقعاً در يك فضا- زمان خميده غيرمتقارن زندگى مى كنيم. اما چنين پيش فرضى تا چه حد قابل قبول است؟
هنگامى كه اينشتين، نظريه نسبيت عام را ارائه كرد، عملاً نشان داد كه فضا- زمان تحت چه شرايطى ممكن است خميده و يا تخت باشد. اما معادلات اينشتين چيزى درباره هندسه واقعى جهان به ما نمى گويد (بلكه صرفاً حالت هاى ممكن اين هندسه را به تصوير مى كشد). بنابراين، به عنوان مثال كيهان شناسان صرفاً با اتكا به اين معادلات نمى توانند بگويند كه آيا جهان ما تا بى نهايت ادامه دارد و يا اينكه اين جهان، جهانى خميده و بسته است. همين امر، در ماشين هاى زمان متفاوتى را بر روى فيزيكدان ها گشوده است، كه برخى قابل قبول تر از بقيه هستند.
به عنوان مثال، يكى از پاسخ هاى مشهور معادلات اينشتين كه براى نخستين بار توسط رياضيدانى به نام «كورت گودل»
Godel. K
 ارائه شد، جهانى را توصيف مى كند كه با سرعت به دور خود درحال چرخش است. در چنين جهانى نور به جاى حركت در خط راست، در يك مسير مارپيچى حركت خواهدكرد. «گودل» توانست نشان دهد مسافرى كه در چنين جهانى مسيرى طولانى را در اعماق كيهان طى مى كند، قادر است حتى از نور هم پيشى گرفته و در زمانى پيش از شروع حركت خود از مبدأ، به آنجا بازگردد. به عبارتى جهان چرخنده گودل، همانند يك ماشين زمان عمل مى كند. اما مسئله همان طور كه «پاس» هم بدان اشاره مى كند، اين است كه ما واقعاً در چنين جهانى زندگى نمى كنيم.
يكى ديگر از انواع ماشين زمان را مى توان در درون سياه چاله هاى چرخان جست وجو كرد. در سياه چاله هاى چرخان، فضا- زمان آنچنان انحنا پيدا مى كند كه جاى فضا با زمان عوض مى شود. اگرچه اين نوع ماشين زمان واقعاً در جهان ما وجود دارد اما در اينجا هم مسئله آن است كه اين سياه چاله هاى چرخان عملاً خارج از دسترس ما هستند. اما پس از سياه چاله هاى چرخان، نوبت به نوع ديگرى از ماشين زمان مى رسد كه ايده آن براى اولين بار توسط فيزيكدانى به نام «فرانك تيپلر»
F.Tipler
 مطرح شد. اين نوع ماشين زمان در فضا- زمان اطراف يك جرم استوانه اى چرخان نامتناهى شكل مى گيرد، اما به عقيده «پاس» ساخت چنين ماشينى هم عملاً غيرممكن است، چرا كه نيازمند جرم استوانه اى فوق العاده عظيمى است كه با سرعتى غيرقابل باور در حال چرخش باشد
 
شايد سفر زمانى بسيار راحت تر از آن باشد كه تصور مى كنيم
جهان خميده غير متقارن

 
يكى ديگر از گزينه هاى مطرح در مورد ماشين زمان، كرم چاله ها هستند. اين تونل هاى ميكروسكوپى در ساختار فضا- زمان، مى توانند يك نقطه از زمان را به نقطه اى ديگر از آن متصل كنند. اما براى عبور از ميان اين تونل ها هم يك مشكل اساسى وجود دارد: تونل كرم چاله ها در يك چشم برهم زدن پس از تشكيل، به طور خود به خود بسته مى شود.
براى باز نگاه داشتن اين تونل ها فقط يك راه وجود دارد و آن استفاده از نوعى ماده ناشناخته است. اين نوع ماده برخلاف ماده معمولى كه در حضور ميدان گرانشى جذب مى شود، بر اثر نيروى گرانش دفع خواهد شد و همين نيروى دافعه است كه مى تواند از بسته شدن دهانه كرم چاله جلوگيرى كند. اما همان طور كه «پاس» هم مى گويد، ما هنوز نمى دانيم كه چنين ماده عجيب و غريبى در جهان وجود دارد يا خير و اگر وجود داشته باشد، آيا پايدار خواهد بود يا نه.
اگرچه «پاس» اذعان مى دارد طرحى كه توسط او و همكارانش براى سفر در زمان ارائه شده نيز، نيازمند وجود ماده عجيبى است كه بتواند به بعد پنجم انحنا بدهد، اما به نظر او، به هر حال اين طرحى، قابل قبول تر از بقيه طرح هاست. علت اين امر آن است كه ماده عجيب ناشناخته در اين طرح ( برخلاف طرح كرم چاله ها) مى تواند در ميان ابعاد بالاتر خارج از جهان ما، پنهان شده باشد. بدين ترتيب طرح «پاس» مى تواند توضيح دهد كه چرا تاكنون ما با چنين ماده عجيب و غريبى در جهان مواجه نشده ايم.
البته ايده «پاس» هم مانند هر ايده ديگرى منتقدانى دارد. يكى از اين اشخاص، «سيدنى دسر»
S.Deser
 از دانشگاه برانديس ماساچوست است. دسر كه ايده وجود ماده عجيب و ناشناخته را چندان نمى پسندد، همانند اينشتين معتقد است كه سفر در زمان اساساً ممكن نخواهد بود.
اما «پاس» معتقد است كه با تصويرى كه او و همكارانش از فضا- زمان ارائه داده اند، مى توان تعدادى از مسائل بى پاسخ را كه نسبيت عام با آنها مواجه است حل كرد. به عنوان مثال، برقرارى ارتباطى فراتر از سرعت نور مابين نقاط دوردست كيهان با همديگر در جهان اوليه، مى تواند به تبادل گرمايى اين نقاط با همديگر منجر شده باشد. همين امر قادر خواهد بود كه علت يكنواختى دماى جهان را كه توسط كيهان شناسان مشاهده شده است، توضيح دهد. بدين ترتيب نظريه «پاس» مى تواند جايگزينى براى نظريه تورمى باشد (نظريه تورمى در كيهان شناسى سعى دارد تا با فرض اين كه در لحظات آغازين پيدايش جهان، فضا- زمان دچار انبساط فوق العاده سريع و غيرقابل تصورى شده است، يكنواختى دماى جهان را توضيح دهد). در واقع تا پيش از ارائه نظريه پاس، عمده كيهان شناسان از نظريه تورمى حمايت مى كردند، اما مسئله آن است كه هيچكس تاكنون موفق به ارائه جزئيات فيزيك وراى مسئله تورم كيهانى نشده است.
• جهان خميده
در اين ميان برخى نيز به آن بخش ايده «پاس» كه به فضا- زمان خميده غيرمتقارن مرتبط است با ديده ترديد مى نگرند. «تونى پاديلا»
T.Padilla
 از دانشگاه بارسلوناى اسپانيا يكى از اين اشخاص است. وى مى گويد: «اين نظريه قطعاً نظريه جالب توجهى است، اما هنوز زود است كه وجود چنين فضا- زمانى را كه اين نظريه بدان اشاره دارد، طبيعى بدانيم. ابتدا بايد پايدار بودن اين نوع فضا- زمان را ارزيابى كرد و من به شخصه معتقدم كه چنين فضا- زمانى پايدار نخواهد بود ؛ هرچند ممكن است من در اشتباه باشم.»
البته «پاديلا» اذعان مى دارد كه ممكن است در آينده مشخص شود كه يك جهان  پوسته اى با همان ويژگى هايى كه گروه «پاس» بدان اشاره دارد، جهان پايدارى خواهد بود؛ اما در نظر «پاديلا» هنوز چنين چيزى روشن نيست.
«جان كرامر»
J.Cramer
 نيز از دانشگاه واشينگتن در سياتل معتقد است كه در ايده پاس، نكات جالبى نهفته است؛ اما او نيز مى گويد: «تحقق اين ايده نيازمند وجود يك جهان پوسته اى خميده غيرمتقارن است، اما ممكن است جهان ما مشابه چنين جهانى نباشد.» و ادامه مى دهد: «اما به هر حال اين ايده، ايده اى بسيار شگفت انگيز است.»
البته چنانچه سفر در زمان براساس ايده «پاس» ممكن باشد، تنها ذرات خاصى نظير نوترينوهاى خنثى و گراويتون ها امكان اين سفر را خواهند داشت و بنابراين ما عملاً امكان دخل و تصرف چندانى را در گذشته جهان نخواهيم داشت. اما «پاس» با نگاهى واقع بينانه به بحث مسافرت در زمان نگاه مى كند. او معتقد است تا زمانى كه به لحاظ نظرى احتمال سفر در زمان وجود داشته باشد، انجام آزمايش هاى تجربى در اين زمينه به زحمتش مى ارزد. او در اين مورد مى گويد: «حتى چنانچه سفر در زمان ميسر هم نباشد، با تحقيق بر روى ذراتى نظير نوترينوهاى خنثى مى توان به ماهيت آن قانون هاى فيزيك پى برد كه از چنين سفرى جلوگيرى مى كنند.» به هر حال، اولين پاسخ ها به پرسش هاى مطرح در مورد ذراتى نظير نوترينوهاى خنثى به زودى و توسط نتايج آزمايش باريكه نوترينوى
MiniBoone
 ارائه خواهد شد. اين آزمايش تا اواخر همين امسال قادر خواهد بود كه وجود نوترينوى خنثى و مسيرهاى ميان بر در ابعاد فراسوى جهان ما را به طور تجربى تاييد كند. اما اگر سفر در زمان واقعاً حقيقت داشته باشد، ممكن است پاسخ همه پرسش هاى ما، پيش از پرسيدن آنها ارائه شده باشد

javahermarket



:: بازدید از این مطلب : 200
|
امتیاز مطلب : 13
|
تعداد امتیازدهندگان : 4
|
مجموع امتیاز : 4
تاریخ انتشار : جمعه 13 اسفند 1389 | نظرات ()
نوشته شده توسط : حامد

تعديل آب و هوا به عنوان شاخه جديدي در علوم جو براي كنترل محدود و مقطعي بارش ، مه زدايي و كاهش خسارات تگرگ براي محققان و دانشمندان مطرح است.
دانشمندان علوم جو براساس كشفيات اوليه ، آزمايش هاي علمي گسترده اي را براي فناوري بارورسازي ابرها به عنوان روشي موثر در جهت تعديل آب و هوا به اجرا درآوردند به طوري كه اگر اين فناوري بدرستي مورد استفاده قرار گيرد، به نتايج شگفت آوري مي توان دست يافت. تاكنون هدف از بارورسازي ابرها و اقداماتي كه در اين زمينه صورت گرفته تعديل مه ، تگرگ ، باد و رعدوبرق بوده ؛ اما هدف عمده از اجراي طرح ها در اين خصوص افزايش بارش باران و برف است.
طبق اطلاعات به دست آمده از كشورهاي عضو سازمان هواشناسي جهاني ، هم اكنون طرح هاي بارورسازي ابرها در بيش از 40 كشور جهان انجام مي شود.
 

تعديل آب و هوا به شيوه بارورسازي ابرها
سال 1946 در آزمايشگاه هاي تحقيقاتي جنرال الكتريك نيويورك تحقيقاتي انجام شد كه به تعديل حجم عظيمي از ابرها با هزينه مناسب منجر شد. از افرادي كه در اين زمينه نقش بسزايي ايفا كرده اند، مي توان به برنارد ونگوت و وينست شيفر اشاره كرد.
دانشمندان علوم جو براساس كشفيات اوليه ، آزمايش هاي علمي گسترده اي را براي كاربرد فناوري بارورسازي ابرها به عنوان روشي موثر در جهت تعديل آب و هوا به اجرا درآورده اند.

فرآيندهاي طبيعي ابر و بارش

جو علاوه بر اكسيژن ، نيتروژن و گازها حاوي مقادير متغيري از بخار آب است.
مقدار بخار آب موجود در جو، در يك حجم مشخص با بالا رفتن دما افزايش مي يابد. رطوبت نسبي يكي از معيارهاي اندازه گيري بخار آب است. مي توان گفت رطوبت نسبي درصدي از بخار آب موجود در هوا در مقايسه با بيشترين مقدار بخار آبي است كه هوا مي تواند در خود نگاه دارد. به عنوان مثال ، اگر دماي مجاور سطح زمين 25 درجه سانتي گراد و تراكم بخار آب نصف بيشترين مقدار موجود در آن درجه حرارت باشد، رطوبت نسبي 50 درصد خواهد بود. وقتي حجم هوايي با مشخصات فوق سرد مي شود، با صعود به ناحيه فشار هواي كمتر رطوبت نسبي افزايش مي يابد. ضمن اين كه تراكم نسبي بخار آب و هواي خشك ثابت مي ماند. در اين حالت ، اگر دما به 12 درجه سانتي گراد برسد، رطوبت نسبي به صددرصد خواهد رسيد كه در اين حالت مي گوييم هوا اشباع شده است.
اگر سرد شدن ادامه يابد، ميزان بخار اضافه به ميزان مورد نياز براي حفظ حالت اشباع به قطرات ابر تبديل مي شوند. قطرات ابر در اطراف هسته هاي ميعان ابر به وجود مي آيد. ذرات هوا و نيز ميكروسكوپي معلق در جو هميشه وجود دارند، آنهايي كه نسبتا بزرگ و جاذبه الرطوبه هستند، به عنوان هسته هاي ميعان ابر، مناسب تر هستند. از آنجايي كه جو حاوي هسته هاي ميعان زيادي است ، بنابراين بيشتر ابرها از قطرك هاي كوچك با تراكم زياد تشكيل شده اند.

بارورسازي ابرها در ايران

حدود 10 سال از راه اندازي مركز ملي بارورسازي ابرها مي گذرد كه مسوولان اين مركز معتقدند، تاكنون اقدامات فراواني در زمينه كسب دانش فني باروري ابرها، ايجاد مركزي با عنوان مركز ملي تحقيقات و مطالعات باروري ابرها، خريد هواپيما و تجهيزات مخصوص بارور كردن ابرها و تهيه رادارهاي هواشناسي انجام شده است.
مسوولان اين امر معتقدند، در اين سالها موضوع باروري ابرها از جايگاهي ويژه در كشور و منطقه برخوردار است. به طوري كه از سوي مركز ملي تحقيقات و مطالعات باروري ابرها در سال آبي 85 - 86 در مساحتي حدود يك سوم كشور اين فعاليت انجام شد. وزارت نيرو براساس ماده 19 قانون ملي شدن آب ها و ماده 29 قانون توزيع عادلانه آب وظيفه استحصال آب از طريق باروري ابرها را به عهده دارد. جز اين ماده قانوني ، صورتجلسه اي نيز با سازمان هواشناسي مبادله شده كه براساس آن وظيفه تحقيقات درخصوص باروري ابرها به عهده سازمان هواشناسي است و وظيفه انجام مطالعات و اجراي طرح هاي باروري ابرها را وزارت نيرو عهده دار شده است.
براساس گزارش هاي منتشر شده ، طرح باروري ابرها در سال آبي 85 - 86 با استفاده از 2 فروند هواپيماي مجهز به تجهيزات مخصوص باروري ابرها از ابتداي آذر 1385 در محدوده اي به شعاع 400 كيلومتر از مركز يزد كه شامل استان هاي يزد،كرمان ، فارس ، اصفهان ، چهارمحال و بختياري و كهگيلويه و بويراحمد و بخش هايي از استان هاي خراسان رضوي و جنوبي ، قم و سمنان مي شود، به اجرا درآمده است كه اين فعاليت ها تداوم خواهد يافت. همچنين بر اساس گزارش مركز ملي تحقيقات و مطالعات باروري ابرها، در طول دوره عمليات به راه اندازي مجدد رادارهاي هواشناسي مستقر در استان هاي يزد و كرمان اقدام شد و سايت راداري كوهپايه اصفهان نيز به بهره برداري رسيد.

 

 

تعديل مه

 

در جهان تعديل مه براي بهبود بخشيدن به عملياتي كه در بسياري از فرودگاه ها صورت مي گيرد، كاربرد دارد. به طور خاص ، شركت هاي خطوط هوايي از فناوري تعديل آب و هوا بهره مند مي شوند. هم اكنون سيستم هاي عملياتي در چندين فرودگاه عمده و مهم كشور امريكا به كار برده مي شود. در ابتدا تاييد روي پراكنش مه سرد كه شامل قطرك هاي آب ابر سرد در دماي زير صفر درجه سانتي گراد است ، بود. در عين حال ، پيشرفت هايي در زمينه تعديل مه گرم صورت گرفته ؛ اما هنوز فناوري كم هزينه اي جهت پراكنش مه گرم شناخته نشده است.
بارورسازي مه ابرسرد يا يك استراتوس يكي از كاربردهاي فناوري تعديل آب و هواست كه تاثير آن به طور واضح و آشكار نشان داده مي شوند. هواپيماهاي سبك بيشتر براي پرواز بالاي مه فرستاده مي شوند و قرص هاي يخ خشك را روي مه رها مي كنند. در نتيجه بلورهاي يخ رشد مي كنند و طي 10 تا 15 دقيقه تبديل به برف سبك شده و فرو مي ريزند. بارش برف وضوح موقتي ايجاد مي كند كه مي تواند روي باند فرودگاه تاثير بگذارد.

اين رادارها مي توانند تمام سيستم هاي ورودي از غرب و جنوب غرب كشور به منطقه عملياتي را رصد كنند و مشخصات دقيق آن را شامل ارتفاع ابر، ضخامت و تراكم آن ، برش هاي افقي و عمودي از ابرها، ميزان بارش لحظه اي و تجمعي و نقاط حادثه زا در ابر را بررسي كرده و براي تصميم گيري درخصوص عمليات باروري ابرها در اختيار بگذارند.
يكي از نكات مهم در طراحي و اجراي طرح هاي باروري ابرها، نياز آبي منطقه و تاثير اقتصادي اجراي طرح باروري ابرهاست كه اين نكات در طراحي منطقه اجراي عمليات باروري ابرها در نواحي مركزي كشور نقش ويژه اي داشته است.
هم اكنون طرح باروري ابرها در قالب يك طرح مطالعاتي و اجرايي و در طول دوره اجراي عمليات ، ظرفيت بارورسازي ابرها در منطقه را بررسي مي كند و سپس به نتايج به دست آمده به همراه تامين امكانات سخت افزاري و نرم افزاري ، بستري براي اجراي عمليات باروري ابرها در ديگر نقاط كشور فراهم مي كند.

بارورسازي ابرها

گاهي اوقات با بارورسازي ابرها با استفاده از انواع و تعداد مناسب هسته ها در زمان و مكان مناسب ، مي توان طبيعت را در كنترل فرآيند بارش ياري كرد. بارورسازي با استفاده از هسته هاي ميعاني بزرگ مانند ذرات جاذبه الرطوبه ، مواد نمكي متداول و كپسول هاي اوره ، فرآيند بارش ابر گرم را تسريع مي كند. بارورسازي با استفاده از هسته يخ مانند ذرات يديدنقره ، يا با استفاده از ذرات يخ ابرها يا مواد بسيار خنك كننده مانند قرص هاي يخ خشك يا پروپان مايع مي تواتند كارايي فرآيند بارش «ابرسرد» در برخي از ابرها را افزايش دهد. يديد نقره معمولا از دستگاه هايي كه ژنراتورهاي سوخت مايع ، يا فلزهاي پيروتكنيك ناميده مي شوند، آزاد مي شوند. آنها مي توانند تعداد 10 به توان 14 ذره از يك گرم يديدنقره آزاد كنند.
توانايي هسته سازي يديدنقره با كاهش دما افزايش يافته و با نوع دستگاه تغيير مي كند. در بيشتر دستگاه هاي دماي آستانه اي كه در دماي پايين تر از آن ، يديدنقره هسته يخ موثر است 5 (منفي پنج) درجه سانتي گراد است.

بارورسازي ابرهاي كوهساري و همرفتي

وقتي هواي مرطوب ضمن صعود از كوه ها سرد مي شود، ابرها تشكيل مي شوند. ابرهايي كه از اين طريق شكل مي گيرند، ابرهاي كوهساري ناميده مي شود. بيشتر اين ابرها در زمستان از انبوهي از قطرات ابر سرد به وجود مي آيند؛ البته بسياري از اين ابرها در بارش بي تاثيرند. بيش از 90 درصد رطوبت مايع آنها آزاد هستند تا زماني كه با نزول هوا و گرم شدن در باد پناه كوه قطرك ها تبخير مي شوند. بعضي از اين ابرها حاوي ذرات يخ كافي براي تبديل قطرات ابر سرد به بارندگي نيستند. بارورسازي اين نوع ابرها با استفاده از مواد مصنوعي هسته هاي يخ ، باعث افزايش كارايي بارندگي مي شود. ابرهاي كوهساري ديگري كه حاوي مقادير فراوان يخ و هسته هاي يخ مصنوعي افزوده شده هستند، سبب افزايش كارايي بارش نمي شوند.
بارورسازي چنين ابرهايي در واقع مقدار بارندگي را به كمتر از آنچه ممكن است توليد كنند، كاهش مي دهد. هر چند شواهد كمي براي حمايت از اين نظريه وجود دارد، متصديان تعديل آب و هوا بايد درباره انواع مختلف ابرهايي كه در زمستان از روي رشته كوه ها عبور مي كنند، شناخت كافي داشته باشند.در بارورسازي اين ابرها از مواد مختلفي استفاده شده است ، يديدنقره كه با ژنراتورهاي زميني يا از هواپيما بالاي قله ابر آزاد مي شود، بيشترين كاربرد را داشته است.
مطالعات آماري بارندگي و اطلاعات جريان رودخانه اي نشان مي دهد كه در برخي طرح هاي بارورسازي ابرهاي زمستاني كوهساري 5 تا 15 درصد بارندگي فصلي در منطقه هدف افزايش يافته است.
ابرهاي همرفتي در بارندگي تابستاني در سراسر جهان نقش مهمي ايفا مي كنند و منبع عمده بارش در فصول مناطق حاره اي هستند. تعديل ابرهاي همرفتي بسيار پيچيده تر از ابرهاي زمستاني كوهساري است. بارورسازي ابرهاي همرفتي با هسته هاي ميعان بزرگ امكان پذير است ؛ اما از آنجايي كه ميزان مواد مورد نياز زياد است ، اين روش به ندرت عملي است.
اگر شرايط مناسب باشند، ابرهاي همرفتي مي توانند تحريك شوند تا اين كه بيشتر رشد كرده و دوام طولاني تري داشته باشند. تحقيقات نشان مي دهد وارد كردن يديدنقره يا يخ خشك به قسمت هاي ابر سرد يك ابر سبب انجماد قطرات مي شود در اثر انجماد گرماي نهان انجماد به مقدار زيادي آزاد شده ، گرماي آزاد شده شناوري ابر را بيشتر كرده و سبب مي شود ابر بيشتر رشد كند.
هم اكنون انجمن تعديل آب و هوا به نام weather modification Association در كشور امريكا با عنوان انجمن تحقيقات كنترل آب و هوا تاسيس شده است كه 200 عضو را در 5قاره جهان مستقر كرده است كه مي تواند در ارائه دستاوردها و تجارب جهان به ديگر كشورها بسيار فعال و موثر عمل كند.

javahermarket



:: بازدید از این مطلب : 147
|
امتیاز مطلب : 13
|
تعداد امتیازدهندگان : 4
|
مجموع امتیاز : 4
تاریخ انتشار : جمعه 13 اسفند 1389 | نظرات ()
نوشته شده توسط : حامد

جواب پارادوكس اولبرس چيست؟

پيش از اين كه پاسخي به اين سوال بدهيم ، اجازه بدهيد صورت مساله را يك بار ديگر ذكر كنيم، چرا آسمان شب تاريك است؟
اولين كسي كه جرات كرد اين سوال بظاهر بچگانه را بپرسد، فيزيكدان آلماني ، هاينريش ويلهلم اولبرس در سال 1823 بود.
سوالي كه از آن پس به پارادوكس اولبرس معروف شد و سالها ذهن فيزيكدان ها و ستاره شناسان را به خود مشغول كرد؛ زيرا جواب سوال برخلاف صورت كودكانه اش ، اصلا مثل روز روشن نيست.
ابتدا به نظر رسيد گرد و غبار بين ستاره ها مي تواند مساله را حل كند.
اين مواد نور ستاره ها را جذب مي كنند و مانع رسيدن آنها به چشم ما مي شوند، اما مساله اينجاست كه جذب نور، سرانجام آنقدر دماي گردوغبار را بالا مي برد كه آن را به تابش و نورافشاني وامي دارد.
توضيح دوم پاي انتقال به سرخ كهكشان ها و ستاره هاي دور را وسط كشيد.
مي دانيم كه به دليل انبساط جهان ، همه كهكشان ها در حال دورشدن از ما هستند و اين باعث افزايش طول موج پرتوهاي تابيده از آنها يا به اصطلاح انتقال به سرخ نورشان مي شود.
تحت تاثير اين انتقال ، بخش عمده اي از نور مرئي كهكشان هاي دور به نور مادون قرمز تبديل و غيرقابل رويت مي شود؛ اما نبايد فراموش كرد كه به همين ترتيب بخشي از پرتوهاي ماوراي بنفش نيز سر از طيف مرئي درمي آورند و اثربخشي اول را تقريبا خنثي مي كنند.
بهترين توضيحي كه در حال حاضر براي اين پارادوكس وجود دارد، شامل 2 قسمت است

اول اين كه حتي اگر جهان ما بي نهايت بزرگ باشد، بي نهايت پير نيست. اين نكته از آن جهت اهميت دارد كه سرعت نور محدود است و ما هر اتفاق را تنها بعد از رسيدن نورش مي توانيم ببينيم.
به عقيده بيشتر ستاره شناسان ، جهان بين 10 تا 15ميليارد سال عمر دارد.
بنابراين بيشترين فاصله اي كه ما از آن نور دريافت مي كنيم بين 10 تا 15 ميليارد سال نوري است.
حتي اگر ستاره ها يا كهكشان هايي در فاصله دورتر از اين وجود داشته باشد، چيز از آنها به چشم ما نمي رسد.
بخش دوم جواب ، به اين واقعيت برمي گردد كه كهكشان ها، عمر لايتناهي ندارند.
ستاره ها سرانجام تاريك مي شوند و اين اثر در كهشكشان هاي نزديك به خاطر فاصله نوري كوتاه تر زودتر قابل مشاهده است.
برهم نهي اين دو عامل باعث مي شود كه ما هيچ وقت نتوانيم نور ستاره هاي دور و نزديك را همزمان در همه جهات ببينيم.
نور دورترين ستاره ها هنوز به ما نرسيده است ، يا اگر برسد اين سفر اين قدر طول مي كشد كه تعدادي از اجرام نزديك در اين فاصله دار فاني را وداع مي گويند و خاموش مي شوند. اين از تاريك بودن شب.
كسي نمي خواهد دليل روشن بودن روز را بداند؟ 

 

     جواب پارادوكس اولبرس چيست؟

javahermarket



:: بازدید از این مطلب : 154
|
امتیاز مطلب : 9
|
تعداد امتیازدهندگان : 4
|
مجموع امتیاز : 4
تاریخ انتشار : جمعه 13 اسفند 1389 | نظرات ()
نوشته شده توسط : حامد

 آشنايي با درخش ايريديوم
 

  اغلب ما از تعداد زياد ماهواره هايي كه يكي دو ساعت بعد از غروب خورشيد و يا پيش از طلوع آن ديده مي شوند مطلعيم. امروزه از ميان تقريباً 8000 ماهواره در حال گردش به دور زمين تعداد 400 عدد از آنها با چشم غير مسلح قابل رؤيت هستند. شاتل هاي فضايي آمريكا معمولاً پرنورتر (به روشني مشتري در قدر 5/2- ) هستند . اما آنها هميشه در حال گردش نيستند. بسياري از ماهواره هايي كه ديده مي شوند مراحل پاياني مأموريت خود را طي مي كنند. آنها در حال دورانند و در نتيجه درخشندگيشان با تغيير مقطع عرضي قابل رؤيت آنها تغيير مي كند. گهگاهي شاهد درخشندگي هاي پرنورتري هستيم كه حاصل انعكاس نور خورشيد از يك سطح آينه مانند (مثل صفحات خورشيدي يك ماهواره ) است. محاسبات نشان مي دهند كه يك متر مربع از يك سطح آينه اي شده در فاصله 1000 كيلومتر بايد شبيه ستاره اي با قدر 7- به نظر برسد. وقايعي كه بدانها اشاره شد غير قابل پيش بيني هستند زيرا موقعيت دقيق ماهواره و يا صفحات خورشيدي به دلايلي مختلف (امنيتي و غيره) افشا نمي شود. اما اين وضعيت با پرتاب ماهواره هايي توسط شركت ايريديوم كه عمليات آماده سازي آنها در ژوئن سال 1998 به پايان رسيد دگرگون شده است . پس از آنكه اين ماهواره ها درخشش هاي بسيار پرنوري (در حد قدر 8-) در نقاط مختلف آسمان ايجاد كردند، به زودي مورد توجه راصدان آماتور قرار گرفتند

 

 

سيستم ماهواره اي ايريديوم متشكل از 66 ماهواره فعال و 11 عدد ماهواره غير فعال يدكي است كه همگي در مدار هاي پاييني (در حدود 780Km)به دور زمين مي چرخند. آنها براي پشتيباني از سيستم تلفن هاي همراه در سطوح حرفه اي و صنعتي استفاده مي شوند و قادرند هر تلفن همراه در سراسر دنيا را كه از سيستم ايريديوم استفاده مي كند به هر نقطه ديگري متصل كنند. پوشش اين نوع ماهواره ها به قدري كامل است كه نقاطي با نام نقاط كور كه در آن نتوان سيگنالي را دريافت و يا ارسال كرد وجود ندارد. اين سيستم بدين دليل ايريديوم خوانده مي شود كه عنصر ايريديوم در جدول تناوبي داراي عدد اتمي به شماره تعداد ماهواره هاي موجود در اين سيستم است. هر سيستم ايريديوم مجهز به سه آنتن آلومينيومي براق است كه بازتابنده بسيار قوي نور خورشيد هستند . هنگامي كه در وضعيتي مناسب نور خورشيد از روي يكي از آنتن ها به سطح زمين ميرسد ، به دليل مشخص بودن مسيرهاي مداري و جهت ماهواره پيش بيني اينكه انعكاس نور خورشيد به كدام نقطه زمين برمي خورد امكان پذير است .

 
 

اگر شما در چنين مكاني ايستاده باشيد و به طرف ماهواره نگاه كنيد يك نقطه ستاره مانند متحرك با نور ضعيف را خواهيد ديد كه نورش ناگهان به شكل يك درخشش تابناك در مي آيد. اينچنين درخششي مي تواند تا 30 مرتبه نوراني تر از سياره اي همچون زهره باشد كه بغير از ماه و خورشيد پرنور ترين شيء موجود در آسمان است. اينكه نورانيت اين درخشش تا چه اندازه اي خواهد بود به موقعيت شما نسبت به مركز بازتابش بستگي دارد. شما ميتوانيد براي دانستن آنكه چه موقع و كجا به آسمان نگاه كنيد تا يك درخشش ايريديوم را مشاهده نماييد به جداول موجود در بخش ايريديوم وب سايت مراجعه كنيد. از آنجايي كه تعداد زيادي ماهواره در سيستم ايريديوم وجود دارند و هر كدام از ماهواره ها هم داراي سه آنتن بازتابنده هستند، اينچنين تابش هايي بسيار متداول است. به طور معمول در يك هفته مي توانيم انتظار داشته باشيم كه به طور متوسط شاهد 6 درخشش و يا بيشتر باشيم كه غالباً در صبح زود و يا اول غروب روي مي دهند. شايد اين موضوع براي شما جالب باشد كه معمولاً غالب اين درخشش ها در اول صبح و غروب و نه در نيمه شب اتفاق مي افتند. دليلش اين واقعيت است كه ماهواره ها تنها هنگامي مي درخشند كه در داخل سايه زمين واقع نشوند. بنابراين خورشيد نبايد به مقدار زيادي زير سطح افق باشد. بعضي از اين تابش ها مي توانند بقدري درخشان شوند كه حتي در روشنايي روز هم قابل مشاهده باشند. اين درخشش ها در هر جاي زمين بين 5 تا 20 ثانيه طول مي كشند. اما شما قادريد كه اين ماهواره ها را قبل از درخشششان پيدا كنيد و تا مدتي بعد از درخشش هم رديابي كنيد. بنابراين كل زمان مشاهدات شما مي تواند تا يك دقيقه هم طول بكشد. نورانيت درخشان ترين آنها مي تواند بسيار شگفت انگيز باشد .در موارد نادري مشاهده شده كه برخي از آنها از اجسام اطراف روي زمين سايه انداخته اند. حتي بعضي ها مدعي شده اند كه در شب مي توانستند زير نور آنها روزنامه بخوانند.

javahermarket



:: بازدید از این مطلب : 210
|
امتیاز مطلب : 12
|
تعداد امتیازدهندگان : 4
|
مجموع امتیاز : 4
تاریخ انتشار : جمعه 13 اسفند 1389 | نظرات ()
نوشته شده توسط : حامد

فناوري‌هاي نانو در زمينه‌هاي گوناگوني همچون توسعه داروها، آلودگي‌زدايي آب‌ها، فناوري‌هاي ارتباطي و اطلاعاتي توليد مواد مستحكم‌تر و سبك‌تر داراي مزاياي بالقوه مي‌باشند. در حال حاضر شركت‌هاي زيادي نانوذرات را به شكل پودر، اسپري و پوشش توليد مي‌‌كنند كه كاربردهاي زيادي در قسمت‌هاي مختلف اتومبيل، راكت‌هاي تنيس، عينك‌هاي آفتابي ضدخش، پارچه‌هاي ضدلك، پنجره‌هاي خود تميزكن و صفحات خورشيدي دارند.

آيا نانوذرات به سلامتي انسان آسيب مي‌رسانند؟

 اما اثرات افزايش بيش از حد توليد و استفاده از نانومواد در سلامت كاركنان و مصرف كننده‌ها، سلامت عمومي و محيط زيست بايد به دقت مورد توجه قرار گيرد. از آنجايي كه فرآيند رشد و واكنش‌هاي شيميايي كاتاليستي در سطح اتفاق مي‌افتند، يك مقدار مشخصي از ماده در مقياس نانومتري بسيار فعال‌تر از همان مقدار ماده با ابعاد بزرگ‌تر مي‌باشد. اين ويژگي‌ها ممكن است بر روي سلامتي و محيط زيست اثرات منفي داشته و منجر به سميت زياد نانوذرات شوند.

 

 همزمان با توسعه دانش ما در مورد مواد در مقياس‌نانو و افزايش توانايي كار كردن با ساختارها در اين مقياس، فناوري‌نانو رفته رفته گسترش يافته و سرمايه‌گذاري جهاني در اين زمينه نيز افزايش مي‌يابد. فناوري‌هاي نانو در زمينه‌هاي گوناگوني همچون توسعه داروها، آلودگي‌زدايي آب‌ها، فناوري‌هاي ارتباطي و اطلاعاتي توليد مواد مستحكم‌تر و سبك‌تر داراي مزاياي بالقوه مي‌باشند. در حال حاضر شركت‌هاي زيادي نانوذرات را به شكل پودر، اسپري و پوشش توليد مي‌‌كنند كه كاربردهاي زيادي در قسمت‌هاي مختلف اتومبيل، راكت‌هاي تنيس، عينك‌هاي آفتابي ضدخش، پارچه‌هاي ضدلك، پنجره‌هاي خود تميزكن و صفحات خورشيدي دارند. تعداد اين شركت‌ها روز به روز در حال افزايش است.

محدوده اندازه ذراتي كه چنين علاقه‌مندي را به خود جلب كرده است، عموما كمتر از 100 نانومتر است. براي داشتن تصوري از اين مقياس لازم به ذكر است كه موي انسان داراي قطر 10000 تا 50000 نانومتر، يك سلول قرمز خوني داراي قطر حدود 5000 نانومتر و ابعاد يك ويروس بين 10 تا 100 نانومتر است. با كاهش اندازه ذرات، نسبت تعداد اتم‌هاي سطحي به اتم‌هاي داخلي افزايش مي‌يابد. به عنوان مثال درصد اتم‌هاي سطحي يك ذره با اندازه 30 نانومتر، 5 درصد است، در حالي كه اين نسبت براي يك ذره با اندازه 3 نانومتر، 50 درصد مي‌باشد.

بنابراين نانوذرات در مقايسه با ذرات بزرگ‌تر نسبت سطح به وزن بسيار بزرگ‌تري دارند. با كاهش اندازه ذرات به يك دهم نانومتر يا كمتر، اثرات كوانتومي پديدار مي‌شوند و اين اثرات، مي‌تـوانـند به مقـدار زيــادي ويـژگي‌هـاي نــوري، مغـناطيسي و الكتـريكي مواد را تغيير دهند. از طريق پي‌گيري ساختار مواد در مقياس نانو، امكان طراحي و ساخت مواد جديد با ويژگي‌هاي كاملا نو به وجود مي‌آيد. تنها با كاهش اندازه و ثابت نگهداشتن نوع ماده، ويژگي‌هاي اساسي از قبيل هدايت الكتريكي، رنگ، استحكام و نقطه ذوب ماده (كه معمولا براي هر ماده مقدار ثابتي از آنها را در نظر مي‌گيريم) مي‌تواند تغيير كند.

در حال حاضر نانوذراتي كه به طور ناخواسته، از طريق فرآيندهاي احتراق انجام شده جهت توليد انرژي يا در اتومبيل‌ها، فرآيندهاي خوردگي مكانيكي و يا فرآيندهاي صنعتي معمول به وجود مي‌آيند، بيش از توليد صنعتي نانوذرات بر محيط زيست و زندگي انسان تاثير مي‌گذارند. اما اثرات افزايش بيش از حد توليد و استفاده از نانومواد در سلامت كاركنان و مصرف كننده‌ها، سلامت عمومي و محيط زيست بايد به دقت مورد توجه قرار گيرد. از آنجايي كه فرآيند رشد و واكنش‌هاي شيميايي كاتاليستي در سطح اتفاق مي‌افتند، يك مقدار مشخصي از ماده در مقياس نانومتري بسيار فعال‌تر از همان مقدار ماده با ابعاد بزرگ‌تر مي‌باشد. اين ويژگي‌ها ممكن است بر روي سلامتي و محيط زيست اثرات منفي داشته و منجر به سميت زياد نانوذرات شوند.

 

تنفس نانوذرات

خطرات احتمالي نانوذراتي كه در هوا پخش شده‌اند، يعني آئروسل‌ها از اهميت بيشتري برخوردارند. اين قضيه به دليل تحرك بالاي آنها و امكان جذب آنها از طريق ريه، كه راحت‌ترين مسير ورود به بدن مي‌باشد، اهميت پيدا مي‌كند. اندازه ذرات تا حدزيادي تعيين‌كننده محل نشست اين ذرات در دستگاه تنفسي مي‌باشد. به خاطر راحت‌تر شدن كار، دستگاه تنفسي را به سه قسمت ناحيه‌اي و كاركردي تقسيم مي‌‌كنيم:

1- مسير‌هاي هوايي بالايي،

2- ناحيه نايژه‌ها، كه هر دوي آنها به وسيله لايه موكوس حفاظت مي‌شوند. در اينجا ذرات بزرگ‌تر، از طريق نشستن بر روي ديواره مسير هوايي، از هواي ورودي به ريه جدا مي‌شوند. حركات مژه‌هاي اين قسمت، خلط را به سوي گلو بالا برده و از آنجا يا در اثر سرفه خارج و يا بلعيده مي‌شوند. ذرات كوچكتر (كوچكتر از 2.5 ميكرومتر) و نانوذرات ممكن است وارد كيسه‌هاي هوايي شوند، كه ناحيه مبادله گاز در ريه مي‌باشند. جهت تسهيل جذب اكسيژن و دفع دي‌اكسيد كربن، تمام غشاها و سلول‌ها در اين قسمت از ريه، نازك و آسيب‌پذير بوده و هيچ‌گونه لايه حفاظتي ندارند. تنها مكانيسم حفاظتي در اين قسمت از طريق ماكروفاژها مي‌باشد.

3- ماكروفاژها سلول‌هاي بزرگي هستند كه اشياي خارجي را بلعيده و از طريق جابه‌جا كردن آنها، به عنوان مثال به سوي گره‌هاي لنفاوي، آنها را از كيسه‌هاي هوايي خارج مي‌كنند. نانوذرات تا حد زيادي از اين سيستم حفاظتي رها شده و مي‌توانند وارد بافت‌هاي تنفسي گردند. ذرات و الياف باقي‌مانـده مي‌تواننـد با بافت‌هاي مخاطي ريوي بر هم كنش داده و منجر به ايجاد التهاب شديد، زخم و از بين رفتن بافت‌هاي ريوي گردند. اين وضعيت ريه‌ها شبيه حالت به وجود آمده در بيماري‌هايي همچون بيماري باكتريايي ذات‌الريه، يا بيماري‌هاي ريوي صنعتي مهلك همانند سيليكوسيس يا آزبستوسيس مي‌باشد.

سيليكوسيس و آزبستوسيس

با وجودي كه بيماري‌هاي سيليكوسيس و آزبستوسيس از طريق نانوموادي كه به روش تكنيكي توليد شده‌اند به وجود نمي‌‌آيند، اما منشا ايجاد اين بيماري‌ها، تنفس موادي شبيه نانوذرات است كه اطلاعات قديمي در مورد اثرات زيان‌بخش آنها بر روي سلامتي وجود دارد. سيليكوسيس زماني ايجاد مي‌شود كه گرد و غبار حاوي سيليس به مدت طولاتي به درون ريه تنفس شود. سيليس بلوري براي سطح بيروني ريه سمي مي‌باشد. زماني كه سيليس بلوري در تماس با ريه قرار مي‌گيرد اثرات التهابي شديدي به وجود مي‌آيد. در مدت زمان طولاني اين التهاب باعث مي‌شود تا بافت ريه به طور برگشت‌ناپذيري آسيب‌ديده و ضخيم شود كه اين پديده به نام فيبروسيس ناميده مي‌شود.

سيليس بلوري عموما در ماسه‌سنگ، گرانيت، سنگ لوح، زغال سنگ و ماسه سيليسي خالص وجود دارد. بنابراين افرادي همچون كارگران كارخانه‌هاي ذوب فلزات، سفال‌گران و كارگراني كه با ماسه كار مي‌كنند، در معرض خطر قرار دارند. سيليس بلوري از سوي سازمان بهداشت جهاني به عنوان يك ماده سرطانزا معرفي شده است.

الياف پنبه نسوز داراي طول چند ميكرومتر مي‌باشند و در نتيجه جزء نانومواد قرار نمي‌گيرند. با اين‌ حال جزء ذرات و الياف مجموعه امراض شغلي قرار مي‌گيرند. پنبه نسوز يك فيبر معدني طبيعي است كه در بيش از 3000 ماده ساختماني و محصول توليد شده به كار گرفته شده است. تمام انواع پنبه نسوز تمايل به خرد شدن به الياف بسيار ريز دارند.

به دليل كوچك بودن، اين الياف پس از پخش شدن در هوا ممكن است به مدت چند ساعت يا حتي چند روز معلق بمانند. الياف پنبه نسوز تخريب‌پذير نبوده و در طبيعت پايدار مي‌باشند. اين الياف در مقابل مواد شيميايي پايدار هستند، تبخير نمي‌شوند، در آب حل نمي‌شوند و در طول زمان تجزيه نمي‌گردند. پنبه نسوز موجب ايجاد سرطان ريه و مزوتليوما مي‌شود كه نوعي تومور خطرناك غشايي است كه ريه را مي‌پوشاند .

آلودگي ذره‌اي هوا در مشاغل ديگري همچون توليد و فرآوري كربن سياه و الياف مصنوعي نيز موجب ايجاد نگراني مي‌شود.

آلودگي ذره‌اي هوا

آلودگي هوا مخلوط كمپلكسي از تركيبات مختلف در فاز گاز، مايع و جامد است. خود مواد ذره‌اي مخلوطي ناهمگن از ذرات معلق هستند كه تركيب شيميايي و اندازه آنها متفاوت است. در مطالعات اپيدمي‌شناسي، انواع مختلفي از آلودگي‌هاي ذره‌اي هواي معـرفي شـده‌اند كـه از آن جمـله ميـتـوان بـه TPS (مجموع مواد معلق) و PM 10 (مواد ذره‌اي با قطر موثر آئروديناميك كمتر از 10 ميكرومتر) اشاره كرد. در سال‌هاي اخير مطالعات زيادي در زمينه مواد ذره‌اي ريز PM 2.5 (ذراتي با قطر آئروديناميك كمتر از 2.5 ميكرومتر) و فوق ريز (ذرات با قطر كمتر از 100 نانومتر) انجام گرفته است.

با وجودي كه ميزان خالص آلودگي‌ ذره‌اي هواي شهري (يعني مقدار PM 2.5)، با كم شدن نشر ذرات از صنايع و مراكز توليد انرژي كاهش يافته است، غلظت ذرات فوق‌ريز ناشي از ترافيك افزايش يافته است. هر چند غلظت اين ذرات كوچك معمولاً مهمتر است اما سهم آنها معمولاً پايينتر از غلظت كل است. بنابراين اندازه‌‌گيري توزيع اندازه ذرات تا چند نانومتر ، براي توصيف ذرات پخش‌شده از ترافيك ضروري است.

با توسعه روش‌هاي اندازه‌گيري آثار روشن‌تري از ذرات با اندازه كوچك‌تر مشاهده گرديد. با اين‌حال، بسياري از مطالعات هنوز ادامه دارند و تعداد بسيار كمي از آنها تاكنون به نتيجه رسيده‌اند. پيشنهاد شده است كه اثرات زيان‌آور آلودگي ذره‌اي هوا به طور عمده به غلظت ذرات كوچك‌تر از 100 نانومتر ارتباط دارد و به غلظت جرمي ذرات بزر‌گ‌تر بستگي چنداني ندارد. بنابراين معقول به نظر مي‌رسد كه اطلاعات به دست آمده از اپيدمي‌شناسي محيطي را با داده‌هاي حاصل از مطالعات سم‌شناسي انجام گرفته بر روي حيوانات و يا ساير داده‌هاي تجربي تركيب نماييم.

مطالعات اپيدمي‌شناسي زيادي ثابت كرده‌اند كه ارتباط مستقيمي بين افزايش مقطعي مواد ذره‌اي و افزايش بيماري و مرگ و مير ناشي از نارسايي‌هاي قلبي و عروقي وجود دارد. بيماران مسن‌تري كه سابقه بيماري‌هاي قلبي و يا تنفسي دارند و همچنين بيماران ديابتي، در معرض خطر بيشتري قرار دارند.

مدارك تجربي، مكانيسم‌هاي بيولوژيكي محتملي همچون تحريك دستگاه تنفسي و فشار اكسيدي جهازي را نشان مي‌دهند. در نتيجه اين تحريك‌ها، مجموعه‌اي از پاسخ‌هاي زيستي همانند موارد زير ممكن است ايجاد شوند:

تغيير جريان خون به نحوي كه موجب ايجاد انعقاد در قسمتي از رگ‌هاي خوني گردد، به هم خوردن آهنگ ضربان قلب، عملكرد نادرست و بحراني رگ‌ها، ناپايداري پلاكت‌هاي خوني، و در طولاني مدت توسعه تصلب شرايين، التهاب مزاجي و ريوي ناشي از ذرات، تصلب شرايين تسريع شده و عملكرد تغيير يافته ارادي قلب.

اين موارد ممكن است بخشي از عوامل زيستي باشند كه آلودگي ذره‌اي هوا را به مرگ و مير ناشي از بيماري‌هاي قلبي ارتباط مي‌دهند. همچنين نشان داده شده است كه نشست ذرات در كيسه‌هاي هوايي شش‌ها منجر به فعال شدن توليد سيتوكين به وسيله ماكروفاژها و سلول‌هاي اپيتليال كيسه‌هاي هوايي گشته و موجب التهاب سلول‌ها مي‌شود. در نمونه‌هايي كه به طور تصادفي از ميان بزرگسالان سالم در معرض آلودگي ذره‌اي هوا انتخاب شده بودند، افزايش ويسكوزيته پلاسما، فيبرينوژن و پروتئين فعال C مشاهده گرديد.

خلاصه و چشم‌انداز بحث

در مجموع مدارك بسيار زيادي حاصل از مطالعات اپيدمي‌شناسي وجود دارد كه اثرات زيان‌آور ذرات فوق‌ريز را بر روي سلامتي نشان مي‌دهند. همچنين از مدت‌ها پيش مدارك زيادي مبني بر زيان‌آور بودن تنفس ذرات قابل تنفس در محيط‌هاي كاري وجود دارد. به طور كامل مشخص نيست كه اين مسائل به نانومواد ساخت بشر مربوط است يا نه. با اين حال منطقي آن است تا زماني كه بر اساس مطالعات بيشتر اپيدمي‌شناسي، همچنين مطالعات انجام شده بر روي حيوانات، اثرات زيان‌آور اين نانومواد كاملا مشخص نشده است، از اين داده‌ها چشم‌پوشي نكنيم.

در حال حاضر هيچ قانوني در مورد توليد و كاربرد نانومواد براي سلامتي كاركنان و مصرف‌كنندگان و همچنين براي مسائل زيست‌محيطي وجود ندارد. همچنين در زمينه قانون‌گذاري براي مواد شيميايي، هيچ گزينه‌اي براي اندازه ذرات در هنگام ثبت يك ماده مدنظر قرار نمي‌گيرد.

پيش از انجام هرگونه قانون‌گذاري در زمينه نانومواد، بايد اطلاعات بسيار زيادي راجع به اثرات فرآيندها و محصولات نانو، بر روي سلامتي انسان و همچنين محيط زيست به دست آيد. اما حتي با در نظر گرفتن عدم قطعيت علمي موجود، شواهد كافي براي انجام اقدامات پيشگيرانه در محيط‌هاي كاري و بسته وجود دارد.

javahermarket



:: بازدید از این مطلب : 134
|
امتیاز مطلب : 9
|
تعداد امتیازدهندگان : 4
|
مجموع امتیاز : 4
تاریخ انتشار : جمعه 13 اسفند 1389 | نظرات ()
نوشته شده توسط : حامد
فيبر نوري چيست و كاربرد و عملكرد فيبر نوري چگونه است
 
پيش گفتار
فيبر نوري يكي از محيط هاي انتقال داده با سرعت بالا است . امروزه از فيبر نوري در موارد متفاوتي نظير: شبكه هاي تلفن شهري و بين شهري ، شبكه هاي كامپيوتري و اينترنت استفاده بعمل مي آيد. فيبرنوري رشته اي از تارهاي شيشه اي بوده كه هر يك از تارها داراي ضخامتي معادل تار موي انسان را داشته و از آنان براي انتقال اطلاعات در مسافت هاي طولاني استفاده مي شود.

 مباني فيبر نوري

 فيبر نوري ، رشته اي از تارهاي بسيار نازك شيشه اي بوده كه قطر هر يك از تارها نظير قطر يك تار موي انسان است . تارهاي فوق در كلاف هائي سازماندهي و كابل هاي نوري را بوجود مي آورند. از فيبر نوري بمنظور ارسال سيگنال هاي نوري در مسافت هاي طولاني استفاده مي شود.

مزاياي فيبر نوري
فيبر نوري در مقايسه با سيم هاي هاي مسي داراي مزاياي زير است :
· ارزانتر. هزينه چندين كيلومتر كابل نوري نسبت به سيم هاي مسي كمتر است .
· نازك تر. قطر فيبرهاي نوري بمراتب كمتر از سيم هاي مسي است .

 · ظرفيت بالا. پهناي باند فيبر نوري بمنظور ارسال اطلاعات بمراتب بيشتر از سيم مسي است .

· تضعيف ناچيز. تضعيف سيگنال در فيبر نوري بمراتب كمتر از سيم مسي است .
· سيگنال هاي نوري . برخلاف سيگنال هاي الكتريكي در يك سيم مسي ، سيگنا ل ها ي نوري در يك فيبر تاثيري بر فيبر ديگر نخواهند داشت .
· مصرف برق پايين . با توجه به سيگنال ها در فيبر نوري كمتر ضعيف مي گردند ، بنابراين مي توان از فرستنده هائي با ميزان برق مصرفي پايين نسبت به فرستنده هاي الكتريكي كه از ولتاژ بالائي استفاده مي نمايند ، استفاده كرد.
· سيگنال هاي ديجيتال . فيبر نور ي مناسب بمنظور انتقال اطلاعات ديجيتالي است .
· غير اشتعال زا . با توجه به عدم وجود الكتريسيته ، امكان بروز آتش سوزي وجود نخواهد داشت .
· بك وزن . وزن يك كابل فيبر نوري بمراتب كمتر از كابل مسي (قابل مقايسه) است.
· انعطاف پذير . با توجه به انعظاف پذيري فيبر نوري و قابليت ارسال و دريافت نور از آنان، در موارد متفاوت نظير دوربين هاي ديجيتال با موارد كاربردي خاص مانند : عكس برداري پزشكي ، لوله كشي و ...استفاده مي گردد.
با توجه به مزاياي فراوان فيبر نوري ، امروزه از اين نوع كابل ها در موارد متفاوتي استفاده مي شود. اكثر شبكه هاي كامپيوتري و يا مخابرات ازراه دور در مقياس وسيعي از فيبر نوري استفاده مي نماين
 
بخش هاي مختلف فيبر نوري
 
يك فيبر نوري از سه بخش متفاوت تشكيل شده است :
هسته (Core)
هسته نازك شيشه اي در مركز فيبر كه سيگنا ل هاي نوري در آن حركت مي نمايند.
روكش Cladding  بخش خارجي فيبر بوده كه دورتادور هسته را احاطه كرده و باعث برگشت نورمنعكس شده به هسته مي گردد.
بافر رويه Buffer Coating  
روكش پلاستيكي كه باعث حفاظت فيبر در مقابل رطوبت و ساير موارد آسيب پذير ، است .
انواع فيبر نوري
صدها و هزاران نمونه از رشته هاي نوري فوق در دسته هائي سازماندهي شده و كابل هاي نوري را بوجود مي آورند. هر يك از كلاف هاي فيبر نوري توسط يك روكش هائي با نام Jacket محافظت مي گردند. فيبر هاي نوري در دو گروه عمده ارائه مي گردند:
فيبرهاي تك حالته (Single-Mode)
 بمنظور ارسال يك سيگنال در هر فيبر استفاده مي شود نظير : تلفن
فيبرهاي چندحالته Multi-Mode

 

بمنظور ارسال چندين سيگنال در يك فيبر استفاده مي شود( نظير : شبكه هاي كامپيوتري)

 

فيبرهاي تك حالته داراي يك هسته كوچك ( تقريبا" ۹ ميكرون قطر ) بوده و قادر به ارسال نور ليزري مادون قرمز ( طول موج از ۱۳۰۰ تا ۱۵۵۰ نانومتر) مي باشند. فيبرهاي چند حالته داراي هسته بزرگتر ( تقريبا" ۵ / ۶۲ ميكرون قطر ) و قادر به ارسال نورمادون قرمز از طريق LED مي باشند 

 

 

ارسال نور در فيبر نوري
 

 

فرض كنيد ، قصد داشته باشيم با استفاده از يك چراغ قوه يك راهروي بزرگ و مستقيم را روشن نمائيم . همزمان با روشن نمودن چراغ قوه ، نور مربوطه در طول مسير مسفقيم راهرو تابانده شده و آن را روشن خواهد كرد. با توجه به عدم وجود خم و يا پيچ در راهرو در رابطه با تابش نور چراغ قوه مشكلي وجود نداشته و چراغ قوه مي تواند ( با توجه به نوع آن ) محدوده مورد نظر را روشن كرد. در صورتيكه راهروي فوق داراي خم و يا پيچ باشد ، با چه مشكلي برخورد خواهيم كرد؟
در اين حالت مي توان از يك آيينه در محل پيچ راهرو استفاده تا باعث انعكاس نور از زاويه مربوطه گردد.در صورتيكه راهروي فوق داراي پيچ هاي زيادي باشد ، چه كار بايست كرد؟ در چنين حالتي در تمام طول مسير ديوار راهروي مورد نظر ، مي بايست از آيينه استفاده كرد. بدين ترتيب نور تابانده شده توسط چراغ قوه (با يك زاويه خاص) از نقطه اي به نقطه اي ديگر حركت كرده ( جهش كرده و طول مسير راهرو را طي خواهد كرد). عمليات فوق مشابه آنچيزي است كه در فيبر نوري انجام مي گيرد.

 

 

 
تكنولوژي ( فن آوري ) فيبر نوري

 

نور، در كابل فيبر نوري از طريق هسته (نظير راهروي مثال ارائه شده ) و توسط جهش هاي پيوسته با توجه به سطح آبكاري شده ( Cladding) ( مشابه ديوارهاي شيشه اي مثال ارائه شده ) حركت مي كند.( مجموع انعكاس داخلي ) . با توجه به اينكه سطح آبكاري شده ، قادر به جذب نور موجود در هسته نمي باشد ، نور قادر به حركت در مسافت هاي طولاني مي باشد. برخي از سيگنا ل هاي نوري بدليل عدم خلوص شيشه موجود ، ممكن است دچار نوعي تضعيف در طول هسته گردند. ميزان تضعيف سيگنال نوري به درجه خلوص شيشه و طول موج نور انتقالي دارد. ( مثلا" موج با طول ۸۵۰ نانومتر بين ۶۰ تا ۷۵ درصد در هر كيلومتر ، موج با طول ۱۳۰۰ نانومتر بين ۵۰ تا ۶۰ درصد در هر كيلومتر ، موج با طول ۱۵۵۰ نانومتر بيش از ۵۰ درصد در هر كيلومتر

 

 

 

سيستم رله فيبر نوري

 

بمنظور آگاهي از نحوه استفاده فيبر نوري در سيستم هاي مخابراتي ، مثالي را دنبال خواهيم كرد كه مربوط به يك فيلم سينمائي و يا مستند در رابطه با جنگ جهاني دوم است . در فيلم فوق دو ناوگان دريائي كه بر روي سطح دريا در حال حركت مي باشند ، نياز به برقراري ارتباط با يكديگر در يك وضعيت كاملا" بحراني و توفاني را دارند. يكي از ناوها قصد ارسال پيام براي ناو ديگر را دارد.كاپيتان ناو فوق پيامي براي يك ملوان كه بر روي عرشه كشتي مستقر است ، ارسال مي دارد. ملوان فوق پيام دريافتي را به مجموعه اي از كدهاي مورس ( نقطه و فاصله ) ترجمه مي نمايد. در ادامه ملوان مورد نظر با استفاده از يك نورافكن اقدام به ارسال پيام براي ناو ديگر مي نمايد.

 

يك ملوان بر روي عرشه كشتي دوم ، كدهاي مورس ارسالي را مشاهده مي نمايد. در ادامه ملوان فوق كدهاي فوق را به يك زبان خاص ( مثلا" انگليسي ) تبديل و آنها را براي كاپيتان ناو ارسال مي دارد. فرض كنيد فاصله دو ناو فوق از يكديگر بسار زياد ( هزاران مايل ) بوده و بمنظور برقراي ارتباط بين آنها از يك سيتستم مخابراتي مبتني بر فيبر نوري استفاده گردد.

 

 

سيستم رله فيبر نوري از عناصر زير تشكيل شده است :

 

فرستنده . مسئول توليد و رمزنگاري سيگنال هاي نوري است .

 

فيبر نوري مديريت سيكنال هاي نوري در يك مسافت را برعهده مي گيرد.

 

بازياب نوري . بمنظور تقويت سيگنا ل هاي نوري در مسافت هاي طولاني استفاده مي گردد.

 

· دريافت كننده نوري . سيگنا ل هاي نوري را دريافت و رمزگشائي مي نمايد.

 

در ادامه به بررسي هر يك از عناصر فوق خواهيم پرداخت .

 

 

فرستنده

 

وظيفه فرستنده، مشابه نقش ملوان بر روي عرشه كشتي ناو فرستنده پيام است . فرستنده سيگنال هاي نوري را دريافت و دستگاه نوري را بمنظور روشن و خاموش شدن در يك دنباله مناسب ( حركت منسجم ) هدايت مي نمايد. فرستنده ، از لحاظ فيزيكي در مجاورت فيبر نوري قرار داشته و ممكن است داراي يك لنز بمنظور تمركز نور در فيبر باشد. ليزرها داراي توان بمراتب بيشتري نسبت به LED مي باشند. قيمت آنها نيز در مقايسه با LED بمراتب بيشتر است . متداولترين طول موج سيگنا ل هاي نوري ، ۸۵۰ نانومتر ، ۱۳۰۰ نانومتر و ۱۵۵۰ نانومتر است .

 

 

بازياب ( تقويت كننده ) نوري

 

همانگونه كه قبلا" اشاره گرديد ، برخي از سيگنال ها در موارديكه مسافت ارسال اطلاعات طولاني بوده ( بيش از يك كيلومتر ) و يا از مواد خالص براي تهيه فيبر نوري ( شيشه ) استفاده نشده باشد ، تضعيف و از بين خواهند رفت . در چنين مواردي و بمنظور تقويت ( بالا بردن ) سيگنا ل هاي نوري تضعيف شده از يك يا چندين " تقويت كننده نوري " استفاده مي گردد. تقويت كننده نوري از فيبرهاي نوري متععدد بهمراه يك روكش خاص (doping) تشكيل مي گردند. بخش دوپينگ با استفاده از يك ليزر پمپ مي گردد . زمانيكه سيگنال تضعيف شده به روكش دوپينگي مي رسد ، انرژي ماحصل از ليزر باعث مي گردد كه مولكول هاي دوپينگ شده، به ليزر تبديل مي گردند. مولكول هاي دوپينگ شده در ادامه باعث انعكاس يك سيگنال نوري جديد و قويتر با همان خصايص سيگنال ورودي تضعيف شده ، خواهند بود.( تقويت كننده ليزري)

 

دريافت كننده نوري

 

وظيفه دريافت كننده ، مشابه نقش ملوان بر روي عرشه كشتي ناو دريافت كننده پيام است. دستگاه فوق سيگنال هاي ديجيتالي نوري را اخذ و پس از رمزگشائي ، سيگنا ل هاي الكتريكي را براي ساير استفاده كنندگان ( كامپيوتر ، تلفن و ... ) ارسال مي نمايد. دريافت كننده بمنظور تشخيص نور از يك "فتوسل" و يا "فتوديود" استفاده مي كند

javahermarket



:: بازدید از این مطلب : 168
|
امتیاز مطلب : 11
|
تعداد امتیازدهندگان : 4
|
مجموع امتیاز : 4
تاریخ انتشار : جمعه 13 اسفند 1389 | نظرات ()
نوشته شده توسط : حامد

 

چگونه جذابیت ، گیرایی و ماندگاری در قلب های دیگران داشته باشیم
همه ما علاقه‌منديم يادمان در دلهاي اطرافيان باقي باشد و اين تنها با سلاح خُلق خوش حاصل مي‌شود. هنگامي كه به خاطرات پررنگمان با آشنايان مراجعه مي‌كنيم افراد مهربان و خوش اخلاق از ماندگارترين شخصيت‌ها در ذهن و رحمان مي‌باشند. چنين ماندگاري در قلب‌ها آرزوي همه ماست و اين مهم به دست نمي‌آيد مگر آن كه از رموز آن آگاه باشيم‌.
يكي از مهمترين رازهاي رسيدن به آن جذابيت است و قبل از هر چيز بايد بدانيم كه جذابيت چيزي غير از زيبايي است‌. شخص مي‌تواند صورت زيبايي نداشته باشد اما بسيار جذاب باشد و هم چنين مي‌تواند بسيار زيبا باشد اما اصلاً جذابيت نداشته باشد. جذابيت و گيرايي يك ويژگي كاملاً اكتسابي است و به راحتي مي‌توانيم صاحب آن باشيم‌:
 ۱ - ظاهري آراسته داشته باشيد.
تميز و مرتب باشيد، هماهنگي و پاكيزگي شما، ناخودآگاه شما را جذاب مي‌كند. بعضي از افراد براساس تصوري اشتباه براي جذاب شدن به زحمت زيادي مي‌افتند و خود را به شكل‌هاي عجيب و غريبي درست مي‌كنند. مهمترين مسئله اين است كه مرتب و هماهنگ و در عين حال ساده باشيد. نامرتب بودن حتي حرفهاي قشنگ‌، مثبت و تأثيرگذار شما را ضايع مي‌كند. فرزندي كه هميشه پدر و مادر خود را آراسته و با ظاهري مرتب مي‌بيند، ظاهر آراسته فرد ناآشنا او را نمي‌فريبد. چون ممكن است جذب ظاهر آراسته كسي شوند كه تأثير منفي او از اثرات مثبتش به مراتب بيشتر باشد. 
     
۲ - بيشتر سكوت كنيد:
غالباً افراد به اشتباه براي اين كه جذاب‌تر شوند، بيشتر شلوغ مي‌كنند و به خطا مي‌روند. سكوت‌، يك تأثير ذهني و رواني بسيار قوي مي‌گذارد. در سكوت‌، فرد پيرامون خود خلاء ايجاد مي‌كند و هر خلايي‌، جذب را سبب مي‌شود. آنها كه بيشتر صحبت مي‌كنند و كمتر مي‌شنوند از جذابيت خود مي‌كاهند، حال آن كه سكوت و گوش دادن بيشتر به واقع شما را عاقل‌تر و قابل اطمينان‌تر معرفي مي‌كند و اين زمينه‌اي مساعد براي صميميت بيشتر است‌. سكوتي سرشار از اعتماد به نفس سرچشمه صميميت است‌. 
     
 ۳ - نرم و ملايم سخن بگوييد:
هنگامي كه نرم و ملايم صحبت مي‌كنيد افراد را جذب خود مي‌كنيد و به راحتي مي‌توانيد بر روي آنها تأثير بگذاريد. آدم‌هاي خشن و داد و بيدادي افراد مناسبي براي اطمينان كردن‌، نيستند. 
     
۴ - فرد محترمي باشيد:
بي‌احترامي به خود، به ديگران و بي‌احترامي و بي ادبي در كلام و رفتار همگي از جذابيت شما مي‌كاهد. شما بايد هم در ظاهر آراسته باشيد و هم در باطن وارسته‌. افراد مؤدب و متين و محترم بي ترديد جذابند و اين جذابيت از درون موج مي‌زند.
    محترم و مؤدب و باشخصيت باشيد، خواهيد ديد خود به خود جذاب مي‌شويد. 
    
۵ - زياد شوخي نكنيد اما بسيار تبسم كنيد:
شوخي فراوان از انرژي ذهني و جذابيت شما مي‌كاهد چرا كه شوخي فراوان به تدريج مرزهاي لازم بين افراد را از بين مي‌برد متبسم باشيد كه تبسم به چهره شما جذابيتي عميق و ژرف مي‌بخشد. در تبسم‌، سنگيني و متانت و جذابيت است‌. 
     
۶ - قاطعيت يعني جذابيت‌:
كساني كه شخصيت قاطعي دارند و هدفها و ارزش‌هاي معيني دارند، بي‌استثنأ مي‌توانند افراد جذابي باشند. زيرا شخصيت‌هايي جذاب و تأثيرگذارند كه بسيار مصمم هستند و اعتماد به نفس دارند. به دنبال اهداف مشخصي بودن و به آنها رسيدن اعتماد به نفس زيادي به ارمغان مي‌آورد و جذابيت از وجود چنين شخصي موج مي‌زند.
 آسان بود، اين طور نيست‌؟
فكر مي‌كنم شما هم مي‌توانيد يكي از جذاب‌ترين و ماندگارترين‌ مردان و زنان  باشيد. اگر می خواهید دیگران عاشق شما شوند ، معطل نشويد دست به كار شويد
 

javahermarket



:: بازدید از این مطلب : 140
|
امتیاز مطلب : 9
|
تعداد امتیازدهندگان : 4
|
مجموع امتیاز : 4
تاریخ انتشار : جمعه 13 اسفند 1389 | نظرات ()